Giải Toán 11 trang 97 Tập 2 Chân trời sáng tạo
Với Giải Toán 11 trang 97 Tập 2 trong Bài 2: Biến cố hợp và quy tắc cộng xác suất Toán lớp 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 97.
Thực hành 3 trang 97 Toán 11 Tập 2: Cho hai biến cố A và B độc lập với nhau. Biết P(A) = 0,9 và P(B) = 0,6. Hãy tính xác suất của biến cố A ∪ B.
Lời giải:
Vì A, B độc lập với nhau nên P(AB) = P(A)P(B) = 0,9 × 0,6 = 0,54.
Ta có P(A B) = P(A) + P(B) – P(AB) = 0,9 + 0,6 – 0,54 = 0,96.
Vậy P(A B) = 0,96.
Vận dụng trang 97 Toán 11 Tập 2: Khảo sát một trường trung học phổ thông, người ta thấy có 20% học sinh thuận tay trái và 35% học sinh bị cận thị. Giả sử đặc điểm thuận tay nào không ảnh hưởng đến việc học sinh có bị cận thị hay không. Gặp ngẫu nhiên một học sinh của trường. Tính xác suất của biến cố học sinh đó bị cận thị hoặc thuận tay trái.
Lời giải:
Gọi biến cố A: “Học sinh đó thuận tay trái”.
Biến cố B: “Học sinh đó bị cận thị”.
Biến cố AB: “Học sinh đó bị cận thị và thuận tay trái”.
Biến cố A ∪ B: “Học sinh đó bị cận thị hoặc thuận tay trái”.
Theo đề ta có: P(A) = 20%; P(B) = 35%.
Vì A, B độc lập nên P(AB) = P(A)P(B) = 20% × 35% = 7%.
Ta có P(A B) = P(A) + P(B) – P(AB) = 20% + 35% − 7% = 48%.
Vậy xác suất để học sinh đó bị cận thị hoặc thuận tay trái là 48%.
Bài 1 trang 97 Toán 11 Tập 2: Một hộp chứa 5 quả bóng xanh, 6 quả bóng đỏ và 2 quả bóng vàng có cùng kích thước và khối lượng. Chọn ra ngẫu nhiên từ hộp 3 quả bóng. Tính xác suất của các biến cố:
a) "Cả 3 quả bóng lấy ra đều có cùng màu";
b) "Có ít nhất 2 quả bóng xanh trong 3 quả bóng lấy ra".
Lời giải:
Số cách chọn ngẫu nhiên từ hộp 3 quả bóng là ( cách ) .
a) Gọi biến cố A: “3 quả bóng lấy ra là màu xanh” và biến cố B: “3 quả bóng lấy ra là màu đỏ”.
A B là biến cố: “Cả 3 quả bóng lấy ra đều có cùng màu”.
Vì A và B xung khắc nên P(A B) = P(A) + P(B).
Ta có ; .
Do đó .
Vậy xác suất để 3 quả bóng lấy ra đều có cùng màu là .
b) Gọi biến cố D: “Lấy được 2 quả bóng màu xanh”.
Khi đó biến cố A D: “Có ít nhất 2 quả bóng xanh trong 3 quả bóng lấy ra”.
Vì A và D xung khắc nên P(A D) = P(A) + P(D).
Có .
Do đó
Vậy xác suất để có ít nhất 2 quả bóng xanh trong 3 quả bóng lấy ra là .
Bài 2 trang 97 Toán 11 Tập 2: Trên đường đi từ Hà Nội về thăm Đền Hùng ở Phú Thọ, Bình, Minh và 5 bạn khác ngồi vào 7 chiếc ghế trên một xe ô tô 7 chỗ. Khi xe quay lại Hà Nội, mỗi bạn lại chọn ngồi ngẫu nhiên một ghế. Tính xác suất của biến cố "Có ít nhất một trong hai bạn Bình và Minh vẫn ngồi đúng ghế cũ của mình".
Lời giải:
Số phần tử không gian mẫu là 7!.
Gọi A là biến cố “Bình vẫn ngồi đúng ghế cũ của mình” và B là biến cố “Minh vẫn ngồi đúng ghế cũ của mình”.
AB là biến cố: “Cả hai bạn Bình và Minh vẫn ngồi đúng ghế cũ của mình”.
A B là biến cố “Có ít nhất một trong hai bạn Bình và Minh vẫn ngồi đúng ghế cũ của mình”.
Xác suất để Bình vẫn ngồi đúng ghế cũ của mình là: .
Xác suất để Minh vẫn ngồi đúng ghế cũ của mình là: .
Xác suất để cả hai bạn Bình, Minh vẫn ngồi đúng ghế cũ của mình là:
Xác suất để có ít nhất một trong hai bạn Bình và Minh vẫn ngồi đúng ghế cũ của mình là : P(A B) = P(A) + P(B) – P(AB) =
Vậy xác suất để có ít nhất một trong hai bạn Bình và Minh vẫn ngồi đúng ghế cũ của mình là .
Bài 3 trang 97 Toán 11 Tập 2: Cho hai biến cố A và B độc lập với nhau.
a) Biết P(A) = 0,3 và P(AB) = 0,2. Tính xác suất của biến cố A B.
b) Biết P(B) = 0,5 và P(A B) = 0,7. Tính xác suất của biến cố A.
Lời giải:
a) Vì A và B độc lập nên P(AB) = P(A) × P(B).
S uy ra .
P(A B) = P(A) + P(B) – P(AB) = .
Vậy P(A B) .
b) Có P(A B) = P(A) + P(B) – P(AB) = 0,7 mà P(B) = 0,5 nên P(A) – P(AB) = 0,2.
Vì A và B độc lập nên P(AB) = P(A) × P(B).
Do đó P(A) – P(AB) = P(A) – P(A) × P(B) = 0,2.
Suy ra P(A) – P(A) × 0,5 = 0,2 0,5 × P(A) = 0,2 .
Vậy .
Bài 4 trang 97 Toán 11 Tập 2: Lan gieo một đồng xu không cân đối 3 lần độc lập với nhau. Biết xác suất xuất hiện mặt sấp trong mỗi lần gieo đều bằng 0,4. Sử dụng sơ đồ hình cây, tính xác suất của biến cố "Có đúng 1 lần gieo được mặt sấp trong 3 lần gieo".
Lời giải:
Theo sơ đồ hình cây trên, xác suất để có đúng 1 lần gieo được mặt sấp trong 3 lần gieo là:
0,144 + 0,144 + 0,144 = 0,432.
Vậy xác suất để có đúng 1 lần gieo được mặt sấp trong 3 lần gieo là 0,432.
Bài 5 trang 97 Toán 11 Tập 2: Một hộp chứa 50 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 50. Lấy ra ngẫu nhiên đồng thời 2 thẻ từ hộp. Tính xác suất của các biến cố:
a) A: "Tổng các số ghi trên 2 thẻ lấy ra là số chẵn";
b) B: "Tích các số ghi trên 2 thẻ lấy ra chia hết cho 4".
Lời giải:
Từ 1 đến 50 có các số chẵn là: 2; 4; 6; 8; …; 50.
Số các tấm thẻ được đánh số chẵn là: (thẻ).
Từ 1 đến 50 có các số lẻ là: 1; 3; 5; 7; …; 49.
Số các tấm thẻ được đánh số lẻ là: (thẻ).
Gọi A là biến cố “Hai thẻ lấy ra là số chẵn” và B là biến cố “Hai thẻ lấy ra là số lẻ”.
A B là biến cố: “Tổng các số ghi trên 2 thẻ lấy ra là số chẵn”.
Vì A và B xung khắc nên P(A B) = P(A) + P(B).
Có ; .
Do đó .
Vậy xác suất để tổng các số ghi trên 2 thẻ lấy ra là số chẵn là .
b) Gọi C là biến cố “Hai thẻ lấy ra là các số chia hết cho 2 nhưng không chia hết cho 4” và D là biến cố “Hai thẻ lấy ra có ít nhất 1 số chia hết cho 4”.
C D là biến cố “Tích các số ghi trên 2 thẻ lấy ra chia hết cho 4”.
Vì C và D xung khắc nên P(C D) = P(C) + P(D).
Từ 1 đến 50 có các số chia hết cho 4 là: 4; 8; 12; …; 48.
Số thẻ được đánh số chia hết cho 4 là: (thẻ).
Suy ra số thẻ được đánh số chẵn nhưng không chia hết cho 4 là:
25 – 12 = 13 (thẻ).
Ta có .
Xét biến cố “Hai thẻ lấy ra không có số nào chia hết cho 4”.
Số thẻ được đánh số không chia hết cho 4 là: 50 – 12 = 38 (thẻ).
Ta có , suy ra .
Do đó .
Vậy xác suất để tích các số ghi trên 2 thẻ lấy ra chia hết cho 4 là .
Lời giải bài tập Toán 11 Bài 2: Biến cố hợp và quy tắc cộng xác suất hay khác:
Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Toán 11 Bài 1: Vẽ hình khối bằng phần mềm GeoGebra. Làm kính 3D để quan sát ảnh nổi
Toán 11 Bài 2: Ứng dụng lôgarit vào đo lường độ pH của dung dịch
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải SBT Toán 11 Chân trời sáng tạo
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST