Giải Toán 11 trang 86 Tập 2 Chân trời sáng tạo
Với Giải Toán 11 trang 86 Tập 2 trong Bài tập cuối chương 8 Toán lớp 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 86.
Bài 1 trang 86 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với mặt đáy. Đường thẳng CD vuông góc với mặt phẳng nào sau đây?
A. (SAD).
B. (SAC).
C. (SAB).
D. (SBD).
Lời giải:
Đáp án đúng là: A
Vì SA ⊥ (ABCD) nên SA ⊥ CD.
Mà ABCD là hình vuông nên CD ⊥ AD.
Do đó CD ⊥ (SAD).
Bài 2 trang 86 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh b, SA vuông góc với mặt đáy, . Số đo góc giữa cạnh bên SC và mặt đáy là
A. 60°.
B. 30°.
C. 45°.
D. 50°.
Lời giải:
Đáp án đúng là: A
Ta có SA ⊥ (ABCD) suy ra (SC, (ABCD)) = (SC, AC) =
Mà ABCD là hình vuông nên
.
Vậy (SC, (ABCD)) = 60°
Bài 3 trang 86 Toán 11 Tập 2: Cho hình chóp S.ABCD có các cạnh bên và cạnh đáy đều bằng a. Gọi M là trung điểm của SA. Mặt phẳng (MBD) vuông góc với mặt phẳng nào dưới đây?
A. (SBC).
B. (SAC).
C. (SBD).
D. (ABCD).
Lời giải:
Đáp án đúng là: B
Gọi O là tâm của đáy.
Khi đó SO ⊥ (ABCD) nên SO ⊥ BD
Vì ABCD là hình vuông nên AC ⊥ BD. Khi đó:
Bài 4 trang 86 Toán 11 Tập 2: Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng và chiều cao bằng . Khoảng cách từ tâm O của đáy ABC đến một mặt bên là
A. .
B. .
C. .
D. .
Lời giải:
Đáp án đúng là: A
Gọi I là trung điểm của BC, kẻ OH ⊥ SI (H SI).
Vì ΔABC là tam giác đều nên AI ⊥ BC
Ta có: SO⊥(ABC) nên SO⊥BC
⇒ BC ⊥ (SAI) ⇒ BC ⊥ OH
Mà OH ⊥ SI nên OH ⊥ (SBC)
Do đó d(O, (SBC)) = OH
ΔABC là tam giác đều
ΔOHI vuông tại O, OH là đường cao:
Bài 5 trang 86 Toán 11 Tập 2: Thể tích của khối chóp cụt tam giác đều có cạnh đáy lớn bằng 2a, cạnh đáy nhỏ bằng a và chiều cao bằng là
A. .
B. .
C. .
D. .
Lời giải:
Đáp án đúng là: C
Diện tích đáy lớn là:
Diện tích đáy bé là:
Thể tích của bồn chứa là:
.
Bài 6 trang 86 Toán 11 Tập 2: Cho chóp tứ giác S.ABCD có đáy là hình chữ nhật với AB = 4a, AD = 3a. Các cạnh bên đều có độ dài 5a. Góc nhị diện [S, BC, A] có số đo là
A. 75°46′.
B. 71°21′.
C. 68°31′.
D. 65°12′.
Lời giải:
Đáp án đúng là: D
Gọi O là tâm của đáy.
Kẻ OH ⊥ BC (H BC)
Vì ΔSAC cân tại S nên SO ⊥ AC.
Vì ΔSBD cân tại S nên SO ⊥ BD.
⇒ SO ⊥ (ABCD) ⇒ SO ⊥ BC.
Mà OH ⊥ BC nên là góc nhị diện [S, BC, A].
.
Mà .
• .
• .
• .
Bài 7 trang 86 Toán 11 Tập 2: Nếu hình hộp chữ nhật có ba kích thước là 3, 4, 5 thì độ dài đường chéo của nó là
A. .
B. 50.
C. .
D. 12.
Lời giải:
Đáp án đúng là: A
Giả sử hình hộp chữ nhật ABCD.A′B′C′D′ có AB = 3, BC = 4, AA′ = 5.
• .
• .
Bài 8 trang 86 Toán 11 Tập 2: Thể tích của khối lăng trụ tam giác đều có tất cả các cạnh đều bằng a là
A. .
B. .
C. .
D. .
Lời giải:
Đáp án đúng là: A
Diện tích đáy của khối lăng trụ là: .
Chiều cao của khối lăng trụ là cạnh bên của lăng trụ bằng: h = a.
Thể tích của khối lăng trụ là: .
Bài 9 trang 86 Toán 11 Tập 2: Cho hình vuông ABCD và tam giác đều SAB cạnh a nằm trong hai mặt phẳng vuông góc với nhau. Gọi M,N lần lượt là trung điểm của AB và AD.
a) Chứng minh rằng .
b) Tính khoảng cách từ M đến mặt phẳng (SNC).
Lời giải:
a) Tam giác SAB đều có M là trung điểm AB nên SM ⊥ AB. Mà (SAB) ⊥ (SAB) nên SM ⊥ (ABCD). Suy ra SM ⊥ NC.
Xét ΔAMD và ΔDNC
AM = DN
AD = DC
Do đó ΔAMD và ΔDNC (c.g.c)
Suy ra (hai góc tương ứng)
Mà nên .
Từ đó ta có tam giác DNI vuông tại I hay DM ⊥ NC. Mà SM ⊥ NC nên NC ⊥ (SND).
Vậy (SNC) ⊥ (SMD).
b) Kẻ MH ⊥ SI (H SI).
Vì NC ⊥ (SMD) ⇒ NC ⊥ MH ⇒ MH ⊥ (SNC)
Tam giác SAB đều có SM là trung tuyến nên
Tam giác CND vuông có DI là đường cao nên .
Suy ra
•
•
Và SM ⊥ (ABCD) nên SM ⊥ MI.
Tam giác SMI vuông tại M có MH là đường cao
Lời giải bài tập Toán 11 Bài tập cuối chương 8 hay khác:
Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Toán 11 Bài 1: Vẽ hình khối bằng phần mềm GeoGebra. Làm kính 3D để quan sát ảnh nổi
Toán 11 Bài 2: Ứng dụng lôgarit vào đo lường độ pH của dung dịch
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 11 Chân trời sáng tạo
- Giải SBT Toán 11 Chân trời sáng tạo
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
- Soạn văn 11 (hay nhất) - CTST
- Soạn văn 11 (ngắn nhất) - CTST
- Giải sgk Toán 11 - CTST
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - CTST
- Giải sgk Hóa học 11 - CTST
- Giải sgk Sinh học 11 - CTST
- Giải sgk Lịch Sử 11 - CTST
- Giải sgk Địa Lí 11 - CTST
- Giải sgk Giáo dục KTPL 11 - CTST
- Giải sgk Hoạt động trải nghiệm 11 - CTST
- Giải sgk Âm nhạc 11 - CTST