Giải Toán 11 trang 82 Tập 1 Chân trời sáng tạo

Với Giải Toán 11 trang 82 Tập 1 trong Bài 3: Hàm số liên tục Toán 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 82.

Thực hành 2 trang 82 Toán 11 Tập 1: Xét tính liên tục của hàm số: y=x1+2x trên [1; 2].

Lời giải:

Đặt y=fx=x1+2x

Với mọi x0 ∈ (1; 2), ta có:

limxx0fx=limxx0x1+2x=x01+2x0=fx0

Ta lại có:

limx1+fx=limx1+x1+2x=1=f1;

limx2fx=limx2x1+2x=1=f2.

Vậy hàm số y=x1+2x liên tục trên [1; 2].

Vận dụng 1 trang 82 Toán 11 Tập 1: Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của x (kg) bột đá thạch anh được tính theo công thức sau:

Vận dụng 1 trang 82 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11 (k là một hằng số).

a) Với k = 0, xét tính liên tục của hàm số P(x) trên (0; +∞).

b) Với giá trị nào của k thì hàm số P(x) liên tục trên (0; +∞)?

Lời giải:

Vận dụng 1 trang 82 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

a) Với k = 0, hàm số Vận dụng 1 trang 82 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11

+) Lấy x0 ∈ (0; 400) khi đó P(x) = 4,5x

Suy ra limxx0Px=limxx04,5x=4,5x0=Px0

Do đó P(x) liên tục trên (0; 400).

+) Tại x0 = 400, ta có:

limx400Px=limx4004,5x=4,5.400=1 800.

limx400+Px=limx400+4x=4.400=1 600.

Suy ra limx400Pxlimx400+Px. Do đó không tồn tại limx400Px.

Vì vậy hàm số không liên tục tại x = 400.

+) Lấy x0 ∈ (400; +∞) khi đó P(x) = 4x

Suy ra limxx0Px=limxx04x=4x0=Px0

Do đó P(x) liên tục trên (400; +∞) .

Vậy hàm số liên tục trên (0; 400) và (400; +∞).

b) Để hàm số P(x) liên tục trên (0; +∞) thì P(x) phải liên tục trên x0 = 400.

Do đó limx400Px=limx400+Px1 800=4.400+kk=200.

Vậy với k = 200 thì hàm số liên tục trên (0; +∞).

Hoạt động khám phá 3 trang 82 Toán 11 Tập 1: Cho hai hàm số y = f(x) = 1x1 và y = g(x) = 4x.

a) Tìm tập xác định của mỗi hàm số đã cho.

b) Mỗi hàm số liên tục trên những khoảng nào? Giải thích.

Lời giải:

a) +) Xét hàm số: y = f(x) = 1x1

Điều kiện xác định của hàm số là x ≠ 1.

Vậy tập xác định của hàm số là: D = ℝ \ {1}.

+) Xét hàm số: y = g(x) = 4x

Điều kiện xác định của hàm số là: 4 – x ≥ 0 ⇔ x ≤ 4.

Vậy tập xác định của hàm số là: D = (– ∞; 4].

b) +) Xét hàm số f(x):

Với x0 ∈ ( – ∞; 1) thì limxx0fx=limxx011x=11x0=fx0.

Suy ra hàm số f(x) liên tục trên (– ∞; 1).

Với x0 ∈ ( 1; + ∞) thì limxx0fx=limxx011x=11x0=fx0.

Suy ra hàm số f(x) liên tục trên (1; + ∞).

+) Xét hàm số g(x):

Với x0 ∈ (– ∞; 4) thì limxx0gx=limxx04x=4x0=gx0.

Tại x0 = 4 thì limx4gx=limx44x=0=g4.

Vậy hàm số liên tục trên (– ∞; 4].

Lời giải bài tập Toán 11 Bài 3: Hàm số liên tục hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Chân trời sáng tạo khác