Giải Toán 11 trang 62 Tập 2 Chân trời sáng tạo

Với Giải Toán 11 trang 62 Tập 2 trong Bài 2: Đường thẳng vuông góc với mặt phẳng Toán lớp 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 62.

Thực hành 3 trang 62 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông với AB là cạnh góc vuông và có cạnh SA vuông góc với mặt phẳng (ABCD). Cho M, N, P, Q lần lượt là trung điểm của SB, AB, CD, SC. Chứng minh rằng:

a) AB ⊥ (MNPQ);

b) MQ ⊥ (SAB) .

Lời giải:

Thực hành 3 trang 62 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

a) Xét tam giác SBC:

M là trung điểm SB

Q là trung điểm SC

Do đó MQ là đường trung bình của ΔSBC.

MQ//BCBCABMQAB  (1)

Tương tự: MN là đường trung bình của ΔSAB . Khi đó:

 MN // SASAABCD  MN ⊥ (ABCD) ⇒ MN ⊥ AB (2)

Xét hình thang ABCD:

N là trung điểm AB

P là trung điểm CD

Do đó NP là đường trung bình của hình thang ABCD . Khi đó:

NP // BCBC AB NP AB

Từ (1), (2) và (3) suy ra AB ⊥ (MNPQ)

b) Ta có: ABBCSABCBC  SAB

Mà BC // MQ

Do đó MQ ⊥ (SAB)

Vận dụng 2 trang 62 Toán 11 Tập 2: Một kệ sách có bốn trụ chống và các ngăn làm bằng các tấm gỗ (Hình 18). Làm thế nào dùng một êke để kiểm tra xem các tấm gỗ có vuông góc với mỗi trụ chống và song song với nhau hay không? Giải thích cách làm.

Vận dụng 2 trang 62 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

Lời giải:

‒ Ta dùng êke kiểm tra hai mép tấm gỗ vuông góc với trụ chống thì tấm gỗ vuông góc với trụ chống.

‒ Ta kiểm tra tấm gỗ vuông góc với các trụ chống thì các trụ chống song song với nhau.

Hoạt động khám phá 5 trang 62 Toán 11 Tập 2: Hai người thợ trong hình đang thả dây dọi từ một điểm M trên trần nhà và đánh dấu điểm M′ nơi đầu nhọn quả dọi chạm sàn. Có nhận xét gì về đường thẳng MM′ với mặt sàn?

Hoạt động khám phá 5 trang 62 Toán 11 Tập 2 Chân trời sáng tạo | Giải Toán 11

Lời giải:

Đường thẳng MM′ vuông góc với mặt sàn.

Lời giải bài tập Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Chân trời sáng tạo khác