Thực hành 4 trang 49 Toán 11 Tập 1 Chân trời sáng tạo

Thực hành 4 trang 49 Toán 11 Tập 1: Xét tính bị chặn của các dãy số sau:

a) (an) với an=cosπn;

b) (bn) với bn=nn+1.

Lời giải:

a) Vì 1cosπn1 nên 1an1, ∀n ∈ ℕ*.

Do đó dãy số (an) bị chặn trên và chặn dưới.

Vì vậy dãy số (an) bị chặn.

b) Ta có: bn=nn+1=n+11n+1=11n+1

Vì n ∈ ℕ* nên 1n+1>0 nên 11n+1<1 hay bn < 1.

Vì n ∈ ℕ* nên nn+1>0 hay bn > 0.

Suy ra 0 < bn < 1. Do đó (bn) là dãy bị chặn trên và chặn dưới.

Vì vậy dãy số (bn) bị chặn.

Lời giải bài tập Toán 11 Bài 1: Dãy số hay, chi tiết khác:

Các bài học để học tốt Toán 11 Bài 1: Dãy số:

Xem thêm lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Chân trời sáng tạo khác