Giải Toán 11 trang 99 Tập 2 Cánh diều

Với Giải Toán 11 trang 99 Tập 2 trong Bài 4: Hai mặt phẳng vuông góc Toán 11 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 11 dễ dàng làm bài tập Toán 11 trang 99.

Luyện tập 4 trang 99 Toán 11 Tập 2: Cho hình chóp S.ABC có SA ⊥ SB, SB ⊥ SC, SC ⊥ SA. Chứng minh rằng:

a) (SAB) ⊥ (SBC);

b) (SBC) ⊥ (SCA);

c) (SCA) ⊥ (SAB).

Lời giải:

Luyện tập 4 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Ta có: SA ⊥ SB, SA ⊥ SC;

               SB ∩ SC = S trong (SBC).

Suy ra SA ⊥ (SBC).

Mà SA ⊂ (SAB).

Từ đó ta có (SAB) ⊥ (SBC).

b) Ta có: SA ⊥ (SBC) (theo câu a) và SA ⊂ (SCA) nên (SBC) ⊥ (SCA).

c) Ta có: SB ⊥ SA, SB ⊥ SC;

               SA ∩ SC = S trong (SCA).

Suy ra SB ⊥ (SCA).

Mà SB ⊂ (SAB).

Từ đó ta có (SCA) ⊥ (SAB).

Bài 1 trang 99 Toán 11 Tập 2: Quan sát ba mặt phẳng (P), (Q), (R) ở Hình 57, chỉ ra hai cặp mặt phẳng mà mỗi cặp gồm hai mặt phẳng vuông góc với nhau. Hãy sử dụng kí hiệu để viết những kết quả đó.

Bài 1 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

Từ hình ảnh ta thấy hai cặp mặt phẳng vuông góc với nhau là (P) và (R), (Q) và (R).

⦁ Hai mặt phẳng (P) và (R) vuông góc với nhau kí hiệu là: (P) ⊥ (R).

⦁ Hai mặt phẳng (Q) và (R) vuông góc với nhau kí hiệu là: (Q) ⊥ (R).

Bài 2 trang 99 Toán 11 Tập 2: Chứng minh: Nếu hai mặt phẳng vuông góc với nhau thì mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.

Lời giải:

Bài 2 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Cho hai mặt phẳng (P) và (Q) vuông góc với nhau.

Ta cần chứng minh rằng tồn tại một đường thẳng a nằm trong mặt phẳng (P) sao cho đường thẳng a vuông góc với mặt phẳng (Q).

Thật vậy, ta lấy:

⦁ d là giao tuyến của hai mặt phẳng  (P) và (Q);

⦁ a là đường thẳng nằm trong mặt phẳng (P) sao cho a ⊥ d;

· O là giao điểm của đường thẳng a và mặt phẳng (Q).

Do hai mặt phẳng (P) và (Q) cùng chứa điểm O nên hai mặt phẳng đó cắt nhau theo giao tuyến d đi qua O.

Trong mặt phẳng (Q), qua O kẻ đường thẳng b vuông góc với d.

Như vậy ta có: d là cạnh của góc nhị diện [P, d, Q];

                         a ⊂ (P) và a ⊥ d tại O (với O ∈ d);

                         b ⊂ (Q) và b ⊥ d tại O (với O ∈ d);

Suy ra aOb^ là góc phẳng nhị diện của góc nhị diện [P, d, Q].

Mặt khác (P) ⊥ (Q) nên góc nhị diện [P, d, Q] vuông hay aOb^=90°.

Suy ra a ⊥ b.

Ta có: a ⊥ d, a ⊥ b và d ∩ b = O trong (Q).

Suy ra a ⊥ (Q).

Vậy nếu hai mặt phẳng vuông góc với nhau thì mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.

Bài 3 trang 99 Toán 11 Tập 2: Chứng minh các định lí sau:

a) Nếu hai mặt phẳng (phân biệt) cùng vuông góc với mặt phẳng thứ ba thì song song với nhau hoặc cắt nhau theo một giao tuyến vuông góc với mặt phẳng thứ ba đó;

b) Cho hai mặt phẳng song song. Nếu một mặt phẳng vuông góc với một trong hai

mặt phẳng đó thì vuông góc với mặt phẳng còn lại.

Lời giải:

a)

Bài 3 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Giả sử ta có: (P) ⊥ (R), (Q) ⊥ (R), gọi a = (P) ∩ (R), b = (Q) ∩ (R).

Mà (P) và (Q) là hai mặt phẳng phân biệt nên a và b không trùng nhau.

Hơn nữa: a và b cùng nằm trong (R), nên xảy ra hai trường hợp:

⦁ Nếu a // b, mà a ⊂ (P), b ⊂ (Q) thì suy ra (P) // (Q).

⦁ Nếu a cắt b, mà a ⊂ (P) và b ⊂ (Q), thì ta gọi c = (P) ∩ (Q).

Do (P) ⊥ (R), (Q) ⊥ (R) và c = (P) ∩ (Q) nên suy ra c ⊥ (R).

b)

Bài 3 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Giả sử có ba mặt phẳng (P), (Q), (R) thỏa mãn (P) // (Q) và (R) ⊥ (P). Ta cần chứng minh (R) ⊥ (Q).

Gọi a = (P) ∩ (R), lấy d ⊂ (R) sao cho a ⊥ d.

Ta có: (R) ⊥ (P), a = (R) ∩ (P), d ⊂ (R) và a ⊥ d, suy ra d ⊥ (P).

Mà (P) // (Q), d ⊂ (R) nên d ⊥ (Q).

Suy ra (Q) ⊥ (R).

Bài 4 trang 99 Toán 11 Tập 2: Cho một đường thẳng không vuông góc với mặt phẳng cho trước. Chứng minh rằng tồn tại duy nhất một mặt phẳng chứa đường thẳng đó và vuông góc với mặt phẳng đã cho.

Lời giải:

Cho đường thẳng d không vuông góc với mặt phẳng (P). Ta cần chứng minh: tồn tại duy nhất mặt phẳng (Q) vuông góc với (P) và chứa d.

Chứng minh tính tồn tại mặt phẳng (Q):

· Xét trường hợp d cắt (P) tại A.

Bài 4 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lấy M ∈ d sao cho M ≠ A. Vẽ đường thẳng a đi qua M sao cho a ⊥ (P).

Suy ra d ∩ a = M.

Khi đó hai đường thẳng a và d xác định mặt phẳng (Q) hay mặt phẳng (Q) chứa hai đường thẳng a và d.

Vì a ⊥ (P), a ⊂ (Q) nên ta có (P) ⊥ (Q).

· Xét trường hợp d ⊂ (P) hoặc d // (P).

Bài 4 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lấy M ∈ d. Vẽ đường thẳng a đi qua M sao cho a ⊥ (P).

Suy ra d ∩ a = M.

Khi đó hai đường thẳng a và d xác định mặt phẳng (Q) hay mặt phẳng (Q) chứa hai đường thẳng a và d.

Vì a ⊥ (P), a ⊂ (Q) nên ta có (P) ⊥ (Q).

Chứng minh tính duy nhất mặt phẳng (Q):

Giả sử tồn tại mặt phẳng (Q’) khác (Q) sao cho d ⊂ (Q’) và (P) ⊥ (Q’).

Ta thấy: d = (Q’) ∩ (Q).

Mà (P) ⊥ (Q), (P) ⊥ (Q’) nên suy ra d ⊥ (P).

Mâu thuẫn với giả thiết d không vuông góc với (P).

Như vậy, tồn tại duy nhất mặt phẳng (Q) sao cho d ⊂ (Q) và (P) ⊥ (Q).

Bài 5 trang 99 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt phẳng (SAB) vuông góc với mặt đáy, tam giác SAB vuông cân tại S. Gọi M là trung điểm của AB. Chứng minh rằng:

a) SM ⊥ (ABCD);

b) AD ⊥ (SAB);

c) (SAD) ⊥ (SBC).

Lời giải:

Bài 5 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Xét tam giác SAB vuông cân tại S có: SM là đường trung tuyến (do M là trung điểm của AB) nên SM ⊥ AB.

Do A ∈ (SAB) ∩ (ABCD);

      B ∈ (SAB) ∩ (ABCD).

Suy ra AB = (SAB) ∩ (ABCD).

Ta có: (SAB) ⊥ (ABCD);

           SM ⊂ (SAB), SM ⊥ AB;

           (SAB) ∩ (ABCD) = AB.

Từ đó, ta có SM ⊥ (ABCD).

b) Do SM ⊥ (ABCD) và AD ⊂ (ABCD) nên SM ⊥ AD.

Vì ABCD là hình chữ nhật nên AD ⊥ AB.

Ta có: AD ⊥ AB, AD ⊥ SM và AB ∩ SM = M trong (SAB).

Suy ra AD ⊥ (SAB).

c) Do AD ⊥ (SAB) và SB ⊂ (SAB) nên AD ⊥ SB.

Vì tam giác SAB vuông cân tại S nên SA ⊥ SB.

Ta có: SB ⊥ AD, SB ⊥ SA và AD ∩ SA = A trong (SAD).

Suy ra SB ⊥ (SAD).

Hơn nữa SB ⊂ (SBC) nên (SBC) ⊥ (SAD).

Bài 6 trang 99 Toán 11 Tập 2: Cho hình lăng trụ ABC.A’B’C’ có tất cả các cạnh cùng bằng a, hai mặt phẳng (A’AB) và (A’AC) cùng vuông góc với (ABC).

a) Chứng minh rằng AA’ ⊥ (ABC).

b) Tính số đo góc giữa đường thẳng A’B và mặt phẳng (ABC).

Lời giải:

Bài 6 trang 99 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Do A ∈ (A’AB) ∩ (A’AC) và A’ ∈ (A’AB) ∩ (A’AC).

Suy ra AA’ = (A’AB) ∩ (A’AC).

Ta có: (A’AB) ⊥ (ABC);

           (A’AC) ⊥ (ABC);

           (A’AB) ∩ (A’AC) = AA’.

Do đó AA’ ⊥ (ABC).

b) Do AA’ ⊥ (ABC) nên AB là hình chiếu của A’B trên (ABC).

Suy ra góc giữa đường thẳng A’B và mặt phẳng (ABC) bằng A'BA^.

Vì AA’ ⊥ (ABC) và AB ⊂ (ABC) nên AA’ ⊥ AB.

Xét tam giác A’AB vuông tại A có:

tanABA'^=AA'AB=aa=1ABA'^=45°.

Vậy góc giữa đường thẳng A’B và mặt phẳng (ABC) bằng 45°.

Lời giải bài tập Toán 11 Bài 4: Hai mặt phẳng vuông góc hay khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Cánh diều khác