Bài 4 trang 88 Toán 11 Tập 2 Cánh diều

Bài 4 trang 88 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy là hình bình hành. Tam giác ABC nhọn có trực tâm H là hình chiếu của S trên (ABCD). Chứng minh rằng:

a) SA ⊥ AD;

b) SC ⊥ CD.

Lời giải:

Bài 4 trang 88 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Ta có H là trực tâm của tam giác ABC nên AH ⊥ BC.

Hơn nữa BC // AD (do ABCD là hình bình hành).

Suy ra AH ⊥ AD.

Lại có H là hình chiếu của S trên (ABCD) nên HA là hình chiếu của SA trên (ABCD).

Do đó, theo định lí ba đường vuông góc ta có AD ⊥ SA hay SA ⊥ AD.

b) Ta có H là trực tâm của tam giác ABC nên CH ⊥ AB.

Hơn nữa AB // CD (do ABCD là hình bình hành).

Suy ra HC ⊥ CD.

Lại có H là hình chiếu của S trên (ABCD) nên HC là hình chiếu của SC trên (ABCD).

Do đó, theo định lí ba đường vuông góc ta có CD ⊥ SC hay SC ⊥ CD.

Lời giải bài tập Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Cánh diều khác