Bài 8.11 trang 71 Toán 10 Tập 2 - Kết nối tri thức

Bài 8.11 trang 71 Toán 10 Tập 2: Có bao nhiêu số tự nhiên chia hết cho 5 mà mỗi số có bốn chữ số khác nhau?

Lời giải:

Gọi số có 4 chữ số cần tìm có dạng: abcd¯ và a, b, c, d ∈ A = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}, a ≠ 0, a ≠ b ≠ c ≠ d.

Để abcd¯ chia hết cho 5 thì d phải thuộc tập hợp {0; 5}, do đó có 2 cách chọn d. 

+ Trường hợp 1: d = 0.

Chọn a ∈ A \ {0}, a có 9 cách chọn. 

Chọn 2 số b, c ∈ A \ {0; a} và sắp thứ tự chúng, nên có A82=56 cách chọn. 

Do đó có: 9 . 56 = 504 số tự nhiên có 4 chữ số khác nhau có chữ số tận cùng là 0.

+ Trường hợp 2: d = 5.

Chọn a ∈ A \ {0; 5}, a có 8 cách chọn. 

Chọn 2 số b, c ∈ A \ {5; a} và sắp thứ tự chúng, nên có A82=56 cách chọn. 

Do đó có: 8 . 56 = 448 số tự nhiên có 4 chữ số khác nhau có chữ số tận cùng là 5.

Vì hai trường hợp là rời nhau, vậy theo quy tắc cộng có 504 + 448 = 952 số tự nhiên chia hết cho 5 mà mỗi số có bốn chữ số khác nhau. 

Lời giải bài tập Toán 10 Bài 24: Hoán vị, chỉnh hợp và tổ hợp hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài 24: Hoán vị, chỉnh hợp và tổ hợp:

Xem thêm lời giải bài tập Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Kết nối tri thức khác