Giải Toán 10 trang 121 Tập 1 Chân trời sáng tạo

Với Giải Toán 10 trang 121 Tập 1 trong Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu Toán 10 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 121.

Thực hành 1 trang 121 Toán lớp 10 Tập 1: Hãy tìm khoảng biến thiên và khoảng tứ phân vị của các mẫu số liệu sau:

a) 10; 13; 15; 2; 10; 19; 2; 5; 7.

b) 15; 19; 10; 5; 9; 10; 1; 2; 5; 15.

Lời giải:

a) Sắp xếp mẫu số liệu theo thứ tự không giảm, ta được:

2; 2; 5; 7; 10; 10; 13; 15; 19.

+ Khoảng biến thiên của mẫu số liệu là: R = 19 – 2 = 17.

+ Cỡ mẫu là n = 9 là số lẻ nên giá trị tứ phân vị thứ hai là: Q2 = 10.

+ Tứ phân vị thứ nhất là trung vị của mẫu: 2; 2; 5; 7. Do đó Q1 = 3,5.

+ Tứ phân vị thứ ba là trung vị của mẫu: 10; 13; 15; 19. Do đó Q3 = 14.

+ Khoảng tứ phân vị của mẫu là: ∆Q = 14 – 3,5 = 10,5.

b) Sắp xếp mẫu số liệu theo thứ tự không giảm, ta được:

1; 2; 5; 5; 9; 10; 10; 15; 15; 19.

+ Khoảng biến thiên của mẫu số liệu là: R = 19 – 1 = 18.

+ Cỡ mẫu là n = 10 là số chẵn nên giá trị tứ phân vị thứ hai là: Q2 = 129+10=9,5.

+ Tứ phân vị thứ nhất là trung vị của mẫu: 1; 2; 5; 5; 9. Do đó Q1 = 5.

+ Tứ phân vị thứ ba là trung vị của mẫu: 10; 10; 15; 15; 19. Do đó Q3 = 15.

+ Khoảng tứ phân vị của mẫu là: ∆Q = 15 – 5 = 10.

Vận dụng 1 trang 121 Toán lớp 10 Tập 1: Dưới đây là bảng số liệu thống kê của Biểu đồ nhiệt độ trung bình các tháng trong năm 2019 của hai tỉnh Lai Châu và Lâm Đồng (được đề cập đến ở hoạt động khởi động của bài học).

Dưới đây là bảng số liệu thống kê của Biểu đồ nhiệt độ trung bình các tháng

a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của nhiệt độ trung bình mỗi tháng của tỉnh Lai Châu và Lâm Đồng.

b) Hãy cho biết trong một năm, nhiệt độ ở địa phương nào ít thay đổi hơn.

Lời giải:

a)

* Tỉnh Lai Châu:

Sắp xếp các số liệu theo thứ tự không giảm, ta được:

14,2; 14,8; 18,6; 18,8; 20,3; 21,0; 22,7; 23,5; 23,6; 24,2; 24,6; 24,7.

+ Khoảng biến thiên của mẫu số liệu là: R = 24,7 – 14,2 = 10,5.

+ Cỡ mẫu là n = 12 là số chẵn nên giá trị tứ phân vị thứ hai là:

Q2 = 1221,0+22,7=21,85.

+ Tứ phân vị thứ nhất là trung vị của mẫu: 14,2; 14,8; 18,6; 18,8; 20,3; 21,0.

Do đó Q1 = 1218,6+18,8=18,7.

+ Tứ phân vị thứ ba là trung vị của mẫu: 22,7; 23,5; 23,6; 24,2; 24,6; 24,7.

Do đó Q3 = 1223,6+24,2=23,9.

+ Khoảng tứ phân vị của mẫu là: ∆Q = 23,9 – 18,7 = 5,2.

* Tỉnh Lâm Đồng:

Sắp xếp các số liệu theo thứ tự không giảm, ta được:

16,0; 16,3; 17,4; 17,5; 18,5; 18,6; 18,7; 19,3; 19,5; 19,8; 20,2; 20,3.

+ Khoảng biến thiên của mẫu số liệu là: R' = 20,3 – 16,0 = 4,3.

+ Cỡ mẫu là n = 12 là số chẵn nên giá trị tứ phân vị thứ hai là:

Q'2 = 1218,6+18,7=18,65.

+ Tứ phân vị thứ nhất là trung vị của mẫu: 16,0; 16,3; 17,4; 17,5; 18,5; 18,6.

Do đó Q'1 = 1217,4+17,5=17,45.

+ Tứ phân vị thứ ba là trung vị của mẫu: 18,7; 19,3; 19,5; 19,8; 20,2; 20,3.

Do đó Q'3 = 1219,5+19,8=19,65.

+ Khoảng tứ phân vị của mẫu là: ∆'Q = 19,65 – 17,45 = 2,2.

b) Xét về cả khoảng biến thiên và khoảng tứ phân vị của nhiệt độ trung bình mỗi tháng của cả hai tỉnh, ta thấy: 10,5 > 4,3 hay R > R' và 5,2 > 2,2 hay ∆Q > ∆'Q.

Điều đó có nghĩa là trong một năm, nhiệt độ ở Lâm Đồng ít thay đổi hơn.

Lời giải bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Chân trời sáng tạo khác