Giải Toán 10 trang 51 Tập 1 Cánh diều

Với Giải Toán 10 trang 51 Tập 1 trong Bài 4: Bất phương trình bậc hai một ẩn Toán 10 Cánh diều hay nhất, chi tiết sẽ giúp học sinh lớp 10 dễ dàng làm bài tập Toán 10 trang 51.

Luyện tập 3 trang 51 Toán lớp 10 Tập 1: Giải mỗi bất phương trình bậc hai sau bằng cách sử dụng đồ thị:

a) x+ 2x + 2 > 0;

b) – 3x2 + 2x – 1 > 0.

Lời giải:

a) Đặt y = x2 + 2x + 2.

Ta vẽ đồ thị hàm số bậc hai trên. 

Ta có: a = 1, b = 2, c = 2 và ∆ = 22 – 4 . 1 . 2 = – 4 < 0.

- Tọa độ đỉnh I(– 1; 1).

- Trục đối xứng x = – 1. 

- Giao điểm của parabol với trục tung là A(0; 2).

- Parabol không cắt trục hoành. 

- Điểm đối xứng với điểm A(0; 2) qua trục đối xứng x = – 1 là B(– 2; 2).

Do a = 1 > 0 nên bề lõm của đồ thị hướng lên trên. 

Ta có đồ thị hàm số y = x2 + 2x + 2 như hình dưới: 

Giải mỗi bất phương trình bậc hai sau bằng cách sử dụng đồ thị

Quan sát đồ thị trên, ta thấy: x2 + 2x + 2 > 0 biểu diễn phần parabol y = x2 + 2x + 2 nằm phía trên trục hoành, tương ứng với mọi x.

Vậy tập nghiệm của bất phương trình x2 + 2x + 2 > 0 là .

b) Đặt y = – 3x2 + 2x – 1. 

Ta vẽ đồ thị hàm số bậc hai trên.

Ta có: a = – 3, b = 2, c = – 1, ∆ = 22 – 4 . (– 3) . (– 1) = – 8 < 0.

- Tọa độ đỉnh I13;23.

- Trục đối xứng x=13.

- Giao của parabol với trục tung là A(0; – 1). 

- Parabol không có giao điểm với trục hoành. 

- Điểm đối xứng với điểm A(0; – 1) là điểm B23;1.

Do a = – 3 < 0 nên đồ thị có bề lõm hướng xuống dưới. 

Ta vẽ được đồ thị hàm số y = – 3x2 + 2x – 1 như hình dưới: 

Giải mỗi bất phương trình bậc hai sau bằng cách sử dụng đồ thị

Quan sát đồ thị ta thấy: – 3x2 + 2x – 1 > 0 biểu diễn phần parabol nằm phía trên trục hoành, nhưng đồ thị hàm số y = – 3x2 + 2x – 1 nằm hoàn toàn phía dưới trục hoành.

Vậy bất phương trình đã cho vô nghiệm. 

Lời giải bài tập Toán 10 Bài 4: Bất phương trình bậc hai một ẩn hay khác:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác