Bài 4 trang 59 Toán 10 Tập 1 Cánh diều

Bài 4 trang 59 Toán lớp 10 Tập 1: Một người đứng ở điểm A trên bờ sông rộng 300 m, chèo thuyền đến vị trí D, sau đó chạy bộ đến vị trí B cách C một khoảng 800 m như Hình 34. Vận tốc chèo thuyền là 6 km/h, vận tốc chạy bộ là 10 km/h và giả sử vận tốc dòng nước không đáng kể. Tính khoảng cách từ vị trí C đến D, biết tổng thời gian người đó chèo thuyền và chạy bộ từ A đến B là 7,2 phút.

Bài 4 trang 59 Toán 10 Tập 1 Cánh diều | Giải Toán 10

Lời giải:

Đổi: 300 m = 0,3 km; 800 m = 0,8 km; 7,2 phút = 0,12 giờ. 

Gọi độ dài khoảng cách từ vị trí C đến D là x (km, x > 0).

Khi đó ta có: AC = 0,3 km; CD = x km; BC = 0,8 km; DB = BC – CD = 0,8 – x (km). 

Lại có tam giác ACD vuông tại C, áp dụng định lý Pythagore ta có: 

AD2 = AC2 + CD2 = (0,3)2 + x2 = 0,09 + x2 

AD=0,09+x2 (km)

Do đó khoảng cách từ vị trí A đến vị trí D là 0,09+x2 km, mà vận tốc chèo thuyền là 6 km/h và vận tốc dòng nước không đáng kể nên thời gian người đó chèo thuyền từ vị trí A đến vị trí D là t1=0,09+x26 (giờ). 

Quãng đường từ vị trí D đến vị trí B là 0,8 – x (km) và vận tốc chạy bộ là 10 km/h nên thời gian người đó chạy bộ từ vị trí D đến vị trí B là t2=0,8x10 (giờ).

Tổng thời gian người đó chèo thuyền là  t1 + t2 = t = 0,12 (giờ). 

Khi đó ta có phương trình: 0,09+x26+0,8x10=0,12

50,09+x230+30,8x30=0,12

50,09+x2+2,43x=3,6

50,09+x2=1,2+3x (1)

Bình phương cả hai vế của (1) ta được: 25.(0,09 + x2) = (1,2 + 3x)2 

⇔ 2,25 + 25x2 = 1,44 + 7,2x + 9x2 

⇔ 16x2 – 7,2x + 0,81 = 0 

⇔ x = 0,225 (thỏa mãn điều kiện x > 0)

Suy ra x = 0,225 km = 225 m.

Vậy khoảng cách từ vị trí C đến D là 225 m.  

Lời giải bài tập Toán 10 Bài 5: Hai dạng phương trình quy về phương trình bậc hai hay, chi tiết khác:

Các bài học để học tốt Toán 10 Bài 5: Hai dạng phương trình quy về phương trình bậc hai:

Xem thêm lời giải bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác