Giải Tin học 11 trang 122 Kết nối tri thức
Với Giải Tin học 11 trang 122 trong Bài 26: Phương pháp làm mịn dần trong thiết kế chương trình Tin học lớp 11 Kết nối tri thức hay nhất, ngắn gọn sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Tin 11 trang 122.
Câu hỏi 1 trang 122 Tin học 11: Với Bài toán 1 có thể tách các dòng lệnh từ 4 đến 9 thành một hàm con độc lập được không?
Lời giải:
Với Bài toán 1 có thể tách các dòng lệnh từ 4 đến 9 thành một hàm con độc lập
Câu hỏi 2 trang 122 Tin học 11: Trong thiết kế bài toán tìm các cặp phần tử nghịch đảo, các bước sau đã thực hiện những thay đổi quan trọng nào so với bước trước đó?
Lời giải:
Bước thực hiện để tìm các cặp phần tử nghịch đảo trong Python có thể được thực hiện theo nhiều cách khác nhau và tùy thuộc vào cách tiếp cận của người lập trình. Giả sử chúng ta đang thực hiện các bước sau để giải quyết bài toán tìm các cặp phần tử nghịch đảo trong Python:
- Tạo một danh sách các số nguyên cần tìm các cặp phần tử nghịch đảo.
- Tạo một danh sách trống để lưu các cặp phần tử nghịch đảo tìm được.
- Duyệt qua từng phần tử trong danh sách các số nguyên, và cho vào một vòng lặp trong đó duyệt qua các phần tử còn lại của danh sách.
- Tại mỗi cặp phần tử được duyệt qua, kiểm tra xem tích của chúng có bằng 1 không. Nếu có, thêm cặp phần tử này vào danh sách chứa các cặp phần tử nghịch đảo.
Một vài thay đổi quan trọng có thể được thực hiện so với cách tiếp cận mặc định này ví dụ như sử dụng thuật toán tìm kiếm nhị phân để tìm các cặp phần tử nghịch đảo thay vì duyệt qua từng phần tử hoặc sử dụng một thư viện bên ngoài như NumPy để thực hiện tính toán và tìm kiếm các cặp phần tử nghịch đảo. Tuy nhiên các bước cơ bản được giới thiệu ở trên vẫn được sử dụng rộng rãi và cung cấp một cách tiếp cận đơn giản và hiệu quả để giải quyết bài toán tìm các cặp phần tử nghịch đảo trong Python.
Luyện tập 1 trang 122 Tin học 11: Phát biểu sau đúng hay sai?
Khi thiết kế chương trình thì việc đầu tiên là tìm hiểu yêu cầu chung của bài toán, xác định đầu vào, đầu ra của bài toán, sau đó mới đi cụ thể vào chi tiết.
Lời giải:
Phát biểu trên là đúng. Khi thiết kế chương trình, việc đầu tiên là hiểu rõ yêu cầu chung của bài toán, xác định đầu vào và đầu ra của bài toán. Việc này giúp định hướng rõ ràng cho quá trình thiết kế, đảm bảo rằng chương trình được xây dựng đúng theo yêu cầu của bài toán và đáp ứng được các yêu cầu của người dùng. Sau đó, mới đi vào chi tiết thiết kế chương trình, bao gồm việc lựa chọn thuật toán, cấu trúc dữ liệu, giao diện người dùng, kiểm tra lỗi, v.v. Việc đúng đắn từ đầu sẽ giúp tiết kiệm thời gian và nguồn lực trong quá trình phát triển chương trình.
Luyện tập 2 trang 122 Tin học 11: Sử dụng thiết kế của Bài toán 2, tìm tất cả các cặp nghịch đảo của dãy: 3, 2, 1, 5, 4.
Lời giải:
Có 5 cặp nghịch đảo là: (3,2), (3,1), (3,5), (3,4), và (2,1)
Vận dụng 1 trang 122 Tin học 11: Sử dụng phương pháp làm mịn dần để giải bài toán sau: Cho trước số tự nhiên không âm n, viết chương trình kiểm tra xem số n có phải là số nguyên tố hay không? Chương trình cần thông báo "CÓ" nếu n là số nguyên tế, ngược lại thông báo "KHÔNG".
Lời giải:
def is_prime(n):
if n <= 1:
return "KHÔNG"# Trường hợp n <= 1 không phải số nguyên tố
elif n <= 3:
return "CÓ"# Trường hợp n = 2 hoặc n = 3 là số nguyên tố
elif n % 2 == 0:
return "KHÔNG"# Trường hợp n chẵn lớn hơn
Vận dụng 2 trang 122 Tin học 11: Với thuật toán sắp xếp chèn, chứng minh rằng nếu thay toàn bộ phần Chèn A[i] vào vị trị đúng của dãy con A[@), A[l], ..., A[i - 1]> bằng các lệnh sau thì chương trình vẫn đúng:
j=1
while j>0 and A[j]
Đổi chỗ A[j] và A[j-1] j=j-1 Lời giải: Để chứng minh tính đúng đắn của thuật toán sắp xếp chèn với các lệnh thay đổi trên, ta cần chứng minh hai điều kiện sau đây: Điều kiện ban đầu (trước khi bắt đầu vòng lặp): Sau khi thực hiện lệnh j = 1, giá trị của j đang là 1, và dãy con A[0] chỉ gồm một phần tử là A[0] (vì j-1 là 0). Do đó, dãy con này đã được sắp xếp đúng. Điều kiện duy trì (trong quá trình vòng lặp): Trong mỗi vòng lặp của while, nếu A[j] < A[j-1], ta hoán đổi giá trị của A[j] và A[j-1] bằng lệnh Đổi chỗ A[j] và A[j-1]. Sau đó, ta giảm giá trị của j đi 1 đơn vị bằng lệnh j = j - 1. Lúc này, giá trị của A[j] là giá trị của A[j-1] trước khi hoán đổi, và giá trị của A[j-1] là giá trị của A[j] trước khi hoán đổi. Điều này đồng nghĩa với việc dãy con A[0], A[1], ..., A[j-1] đã được sắp xếp đúng sau mỗi vòng lặp. Vậy nên, dãy con A[0], A[1], ..., A[j-1] luôn được sắp xếp đúng sau mỗi vòng lặp của while, và dãy con này sẽ không bị thay đổi giá trị trong quá trình hoán đổi. Do đó, tính đúng đắn của thuật toán sắp xếp chèn vẫn được duy trì sau khi thay toàn bộ phần chèn A[i] vào vị trí đúng của dãy con A[0], A[1], ..., A[i-1] bằng các lệnh trên. Lời giải bài tập Tin học 11 Bài 26: Phương pháp làm mịn dần trong thiết kế chương trình hay khác: Xem thêm lời giải bài tập Tin học lớp 11 Kết nối tri thức hay nhất, ngắn gọn khác: Tin học 11 Bài 27: Thực hành thiết kế chương trình theo phương pháp làm mịn dần Tin học 11 Bài 29: Thực hành thiết kế chương trình theo mô đun Tin học 11 Bài 31: Thực hành thiết lập thư viện chương trình Xem thêm các tài liệu học tốt lớp 11 hay khác: