Cho phương trình bậc hai (ẩn x): x^2 – 4x + m – 2 = 0. Tìm điều kiện của m để phương trình có nghiệm.
Bài 6.20 trang 13 sách bài tập Toán 9 Tập 2: Cho phương trình bậc hai (ẩn x): x2 – 4x + m – 2 = 0.
a) Tìm điều kiện của m để phương trình có nghiệm.
b) Với các giá trị m tìm được ở câu a, gọi x1 và x2 là hai nghiệm của phương trình. Hãy tính giá trị của các biểu thức sau theo m:
A = x12 + x22; B = x13 + x23.
Lời giải:
a) x2 – 4x + m – 2 = 0
Ta có: a = 1, b = –4, c = m – 2.
∆ = b2 – 4ac = (–4)2 – 4 . 1 . (m – 2) = 16 – 4m + 8 = 24 – 4m
Để phương trình có nghiệm thì ∆ ≥ 0 hay 24 – 4m ≥ 0.
Suy ra 24 ≥ 4m nên m ≤ 6.
Vậy phương trình có nghiệm khi m ≤ 6.
b) Theo định lý Viète, ta có:
Do đó: A = x12 + x22 = (x1 + x2)2 – 2x1x2
= 42 – 2(m – 2) = 16 – 2m + 4 = 20 – 2m
B = x13 + x23 = (x1 + x2)3 – 3x1x2(x1 + x2)
= 43 – 3 . 4 . (m – 2) = 64 – 12m + 24 = 88 – 12m.
Vậy A = 20 – 2m và B = 88 – 12m.
Lời giải SBT Toán 9 Bài 20: Định lí Viète và ứng dụng hay khác:
Bài 6.17 trang 13 sách bài tập Toán 9 Tập 2: Tính nhẩm nghiệm của các phương trình sau: ...
Bài 6.18 trang 13 sách bài tập Toán 9 Tập 2: Tìm hai số u và b, biết: u + v = 17, uv = 72; ...
Xem thêm giải sách bài tập Toán lớp 9 Kết nối tri thức hay, chi tiết khác:
SBT Toán 9 Bài 23: Bảng tần số tương đối và biểu đồ tần số tương đối
SBT Toán 9 Bài 24: Bảng tần số, tần số tương đối ghép nhóm và biểu đồ
Xem thêm các tài liệu học tốt lớp 9 hay khác:
- Giải sgk Toán 9 Kết nối tri thức
- Giải SBT Toán 9 Kết nối tri thức
- Giải lớp 9 Kết nối tri thức (các môn học)
- Giải lớp 9 Chân trời sáng tạo (các môn học)
- Giải lớp 9 Cánh diều (các môn học)
- Soạn văn 9 (hay nhất) - KNTT
- Soạn văn 9 (ngắn nhất) - KNTT
- Giải sgk Toán 9 - KNTT
- Giải Tiếng Anh 9 Global Success
- Giải sgk Tiếng Anh 9 Smart World
- Giải sgk Tiếng Anh 9 Friends plus
- Giải sgk Khoa học tự nhiên 9 - KNTT
- Giải sgk Lịch Sử 9 - KNTT
- Giải sgk Địa Lí 9 - KNTT
- Giải sgk Giáo dục công dân 9 - KNTT
- Giải sgk Tin học 9 - KNTT
- Giải sgk Công nghệ 9 - KNTT
- Giải sgk Hoạt động trải nghiệm 9 - KNTT
- Giải sgk Âm nhạc 9 - KNTT
- Giải sgk Mĩ thuật 9 - KNTT