Cho ngũ giác đều ABCDE và một điểm M nằm trong ngũ giác. Gọi A’, B’, C’, D’, E’ lần lượt là các điểm

Bài 6 trang 107 SBT Toán 9 Tập 2: Cho ngũ giác đều ABCDE và một điểm M nằm trong ngũ giác. Gọi A’, B’, C’, D’, E’ lần lượt là các điểm nằm trên các đoạn thẳng MA, MB, MC, MD, ME sao cho MA'MA=MB'MB=13,  CC'MC=DD'MD=23,  ME'E'E=12. Chứng minh ngũ giác A’B’C’D’E’ là ngũ giác đều.

Lời giải:

Cho ngũ giác đều ABCDE và một điểm M nằm trong ngũ giác. Gọi A’, B’, C’, D’, E’ lần lượt là các điểm

Từ MA'MA=MB'MB=13,  CC'MC=DD'MD=23,  ME'E'E=12 suy ra:

                      MA'MA=MB'MB=MC'MC=MD'MD=ME'ME=13.    1

Do đó: A’B’ // AB, B’C’ // BC, C’D’ // CD, D’E’ // DE, E’A’ // EA (định lí Thalès đảo).

Do A’B’ // AB nên MA'B'^=MAB^ (đồng vị);

Do E’A’ // EA nên MA'E'^=MAE^ (đồng vị).

Suy ra MA'B'^+MA'E'^=MAB^+MAE^

Hay B'A'E'^=BAE^.

Chứng minh tương tự, ta được các góc A’, B’, C’, D’, E’ của ngũ giác A’B’C’D’E’ tương ứng bằng các góc A, B, C, D, E của ngũ giác đều ABCDE.

Mà ABCDE là ngũ giác đều nên góc A, B, C, D, E của ngũ giác bằng nhau.

Do đó các góc của ngũ giác A’B’C’D’E’ bằng nhau. (2)

Mặt khác, từ (1) ta cũng chứng minh được:

          A'B'=AB3; B'C'=BC3; C'D'=CD3; D'E'=DE3; E'A'=EA3.

Mà ABCDE là ngũ giác đều nên AB = BC = CD = DE = EA.

Do đó: A’B’ = B’C’ = C’D’ = D’E’ = E’A’. (3)

Từ (2) và (3) suy ra ngũ giác A’B’C’D’E’ là ngũ giác đều.

Lời giải SBT Toán 9 Bài 1: Đa giác đều. Hình đa giác đều trong thực tiễn hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 9 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 9 hay khác:


Giải bài tập lớp 9 Cánh diều khác