Khái niệm tam giác tứ giác có thể mở rộng thành khái niệm n − giác

Bài 3.30 trang 44 sách bài tập Toán 8 Tập 1: Khái niệm tam giác, tứ giác có thể mở rộng thành khái niệm n − giác (n là số tự nhiên lớn hơn 2) như sau:

n – giác là hình tạo bởi n đoạn thẳng (gọi là cạnh của n – giác) A0A1, A1A2, …, An–1An, AnA0 (các điểm A0, A1, ..., A­n gọi là đỉnh của n – giác), trong đó không có ba đỉnh nào cùng nằm trên một đường thẳng và hình nằm về một phía đối với mỗi đường thẳng chứa một cạnh.

Khi n = 3, 4, 5, 6, 7, 8, n − giác còn được gọi lần lượt là tam giác, tứ giác, ngũ giác, lục giác, thất giác, bát giác.

Hai đỉnh của n – giác gọi là kề nhau nếu chúng là hai đỉnh của một cạnh của n – giác.

Đoạn thẳng nối hai đỉnh không kề nhau của n – giác gọi là một đường chéo của n – giác.

a) Chứng minh qua mỗi đỉnh của n – giác, có n − 3 đường chéo của n – giác. Từ đó suy ra n − giác có nn32 đường chéo.

b) Hãy vẽ tất cả các đường chéo của một ngũ giác (n = 5).

Lời giải:

a) Không có đường chéo nào của n – giác nối một đỉnh cho trước với chính đỉnh đó và với hai đỉnh kề với đỉnh đó nên có n − 3 đường chéo của n – giác đi qua đỉnh đang xét.

Tính theo cách đó thì n – giác có n(n – 3) đường chéo, nhưng mỗi đường chéo đã được tính hai lần (mỗi đường chéo có hai đầu mút là hai đỉnh của n – giác) nên n – giác có tất cả nn32 đường chéo.

b) Giả sử ta có ngũ giác ABCDE, khi đó ngũ giác này có 5532=5 đường chéo, đó là: AC, AD, BD, BE, CE (hình vẽ).

Khái niệm tam giác tứ giác có thể mở rộng thành khái niệm n − giác

Lời giải SBT Toán 8 Bài tập cuối chương 3 hay khác:

Xem thêm giải sách bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Kết nối tri thức khác