Gọi H là giao của ba đường cao AI, BJ, CK của tam giác nhọn ABC

Bài 3.29 trang 44 sách bài tập Toán 8 Tập 1: Gọi H là giao của ba đường cao AI, BJ, CK của tam giác nhọn ABC. Dùng công thức tính diện tích tam giác để chứng minh:

HIAI+HJBJ+HKCK=1.

Hỏi khi góc A của tam giác ABC là góc tù thì công thức đó thay đổi thế nào?

Lời giải:

Gọi H là giao của ba đường cao AI, BJ, CK của tam giác nhọn ABC

Kí hiệu S là diện tích tam giác.

• Xét trường hợp tam giác ABC nhọn, ta có

SHBC=12HIBC; SABC=12AIBC

Suy ra SHBCSABC=12HIBC12AIBC=HIAI

Chứng minh tương tự, ta có: SHACSABC=HJBJSHABSABC=HKCK.

Suy ra, HIAI+HJBJ+HKCK=SHBC+SHAC+SHABSABC(do H nằm bên trong tam giác ABC)

Do đó HIAI+HJBJ+HKCK=SABCSABC=1.

• Khi góc A là góc tù, H nằm trong góc đối đỉnh với góc BAC, ta có

SABC = SHBC – SHAB – SHAC nên ta được 1=HIAIHJBJHKCK.

Lời giải SBT Toán 8 Bài tập cuối chương 3 hay khác:

Xem thêm giải sách bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 8 hay khác:


Giải bài tập lớp 8 Kết nối tri thức khác