Chứng minh rằng tổng hai cạnh bên của hình thang lớn hơn hiệu hai đáy của nó
Bài 3.13 trang 37 sách bài tập Toán 8 Tập 1: Chứng minh rằng tổng hai cạnh bên của hình thang lớn hơn hiệu hai đáy của nó.
Lời giải:
Xét hình thang ABCD với hai đáy AB và CD. Giả sử AB < CD.
Kẻ đường thẳng đi qua B song song với AD, cắt CD tại E.
Xét tứ giác ABED có: AB // DE và AD // BE
Do đó ABED là hình bình hành nên AB = DE và AD = BE.
Do AB < CD nên E nằm giữa C và D, do đó EC = DC – DE hay EC = DC ‒ AB. (1)
Trong tam giác BEC có: BE + BC > EC (bất đẳng thức trong tam giác)
Mà AD = BE nên AD + BC > EC (2)
Từ (1), (2) suy ra AD + BC > DC – AB.
Lời giải SBT Toán 8 Bài 12: Hình bình hành hay khác:
Xem thêm giải sách bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 8 hay khác:
- Giải sgk Toán 8 Kết nối tri thức
- Giải SBT Toán 8 Kết nối tri thức
- Giải lớp 8 Kết nối tri thức (các môn học)
- Giải lớp 8 Chân trời sáng tạo (các môn học)
- Giải lớp 8 Cánh diều (các môn học)
Giải bài tập lớp 8 Kết nối tri thức khác
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) - KNTT
- Giải sgk Toán 8 - KNTT
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT