Cho tam giác ABC, hai đường trung tuyến EM và CN cắt nhau tại G (M thuộc AC, N thuộc AB)
Bài 3 trang 45 sách bài tập Toán 8 Tập 2: Cho tam giác ABC, hai đường trung tuyến EM và CN cắt nhau tại G (M ∈ AC, N ∈ AB). Gọi D, E lần lượt là trung điểm của GB, GC. Chứng minh:
a) MN // DE;
b) ND // ME.
Lời giải:
a) Xét ∆ABC, ta có MA = MC và NA = NB nên MN là đường trung bình của ∆ABC.
Suy ra MN // BC (1)
Xét ∆BCG, ta có BD = DG và CE = EG nên DE là đường trung bình của ∆BCG.
Suy ra DE // BC (2)
Từ (1) và (2) suy ra MN // DE.
b) Xét ∆ABG có NA = NB và DG = DB nên ND là đường trung bình của ∆ABG.
Suy ra ND // AG (3)
Xét ∆ACG có MA = MC và EG = EC nên ME là đường trung bình của ∆ACG.
Suy ra ME // AG (4)
Từ (3) và (4) suy ra ND // ME.
Lời giải SBT Toán 8 Bài 2: Đường trung bình của tam giác hay khác:
Xem thêm giải sách bài tập Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 8 hay khác:
- Giải sgk Toán 8 Chân trời sáng tạo
- Giải SBT Toán 8 Chân trời sáng tạo
- Giải lớp 8 Chân trời sáng tạo (các môn học)
- Giải lớp 8 Kết nối tri thức (các môn học)
- Giải lớp 8 Cánh diều (các môn học)
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST