Giải SBT Toán 7 trang 87 Tập 1 Chân trời sáng tạo

Với Giải SBT Toán 7 trang 87 Tập 1 trong Bài tập cuối chương 4 Sách bài tập Toán lớp 7 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 trang 87.

Bài 1 trang 87 sách bài tập Toán lớp 7 Tập 1:

a) Đo các góc trong Hình 1.

Đo các góc trong Hình 1

b) Nêu tên các cặp góc kề bù.

Lời giải:

a) Sử dụng thước đo góc ta đo được xOy^=30°,yOz^=90°, zOt^=60°, xOz^=120°, yOt^=150°xOt^=180°.

b) Các cặp góc kề bù có trong hình là: xOy^ kề bù với yOt^; xOz^ kề bù với zOt^.

Bài 2 trang 87 sách bài tập Toán lớp 7 Tập 1: Hãy kể tên các cặp góc đối đỉnh trong Hình 2.

Hãy kể tên các cặp góc đối đỉnh trong Hình 2

Lời giải:

a) Các cặp góc đối đỉnh trong hình là: A^1A^3; A^2A^4.

b) Các cặp góc đối đỉnh trong hình là: B^1B^3; B^2B^4.

c) Trong hình không có cặp góc nào đối đỉnh do chỉ có tia Oa là tia đối của tia Ob nhưng tia Oc không là tia đối của tia Od.

Bài 3 trang 87 sách bài tập Toán lớp 7 Tập 1: Trong Hình 3 cho biết a // b. Tìm số đo các góc đỉnh A và B.

Trong Hình 3 cho biết a // b. Tìm số đo các góc đỉnh A và B

Lời giải:

– Tại đỉnh A:

• Vì A^2A^4 là hai góc đối đỉnh nên A^2=A^4=32°.

• Vì A^1A^4 là hai góc kề bù nên ta có:

A^1+A^4=180°

Suy ra A^1=180°A^4=180°32°=148°

• Vì A^1A^3 là hai góc đối đỉnh nên A^1=A^3=148°.

– Tại đỉnh B:

Vì a // b nên:

B^1=A^4=32° (hai góc so le trong)

B^2=A^1=148° (hai góc so le trong)

B^3=A^4=32° (hai góc đồng vị)

B^4=A^1=148° (hai góc đồng vị).

Vậy A^1=148°,A^2=32°,A^3=148°; B^1=32°,B^2=148°,B^3=32°,B^4=148°.

Bài 4 trang 87 sách bài tập Toán lớp 7 Tập 1: Vẽ hình, viết giả thiết và kết luận của định lí về đường phân giác của hai góc kề bù.

Lời giải:

Hình vẽ minh họa:

Vẽ hình, viết giả thiết và kết luận của định lí về đường phân giác của hai góc kề bù

Viết giả thiết và kết luận bằng kí hiệu:

Vẽ hình, viết giả thiết và kết luận của định lí về đường phân giác của hai góc kề bù

Bài 5 trang 87 sách bài tập Toán lớp 7 Tập 1: Cho hình chữ nhật ABCD và đường thẳng d cắt hai cạnh AD và CB như trong Hình 4.

Cho hình chữ nhật ABCD và đường thẳng d cắt hai cạnh AD và CB như trong Hình 4

a) Tìm góc đối đỉnh của góc M1.

b) Tìm góc kề bù của góc M1.

c) Tìm góc đồng vị của góc M3.

d) Tìm góc có số đo bằng số đo của góc M1.

Lời giải:

a) Góc đối đỉnh của M^1M^3

b) Góc kề bù của M^1M^2

c) Góc đồng vị của M^3N^1

d) Các góc có số đo bằng số đo của M^1 là: M^3 (đối đỉnh) và N^1 (so le trong).

Bài 6 trang 87 sách bài tập Toán lớp 7 Tập 1: Cho hình thoi ABCD, biết AC là phân giác BAD^. Hãy chứng tỏ CA là phân giác BCD^.

Lời giải:

Cho hình thoi ABCD, biết AC là phân giác góc BAD. Hãy chứng tỏ CA là phân giác góc BCD

Vì ABCD là hình thoi nên AB // CD và AD // BC.

Do AB // CD nên BAC^=DCA^ (hai góc so le trong)

Do AD // BC nên CAD^=ACB^ (hai góc so le trong)

Mà AC là tia phân giác của BAD^ nên BAC^=CAD^

Suy ra DCA^=ACB^

Do đó CA là tia phân giác của BCD^.

Vậy CA là tia phân giác của BCD^.

Bài 7 trang 87 sách bài tập Toán lớp 7 Tập 1: Phát biểu giả thiết, kết luận, vẽ hình minh họa và chứng minh định lí: “Nếu một tứ giác có ba góc vuông thì góc còn lại cũng là góc vuông”.

Lời giải:

Hình vẽ minh họa:

Phát biểu giả thiết, kết luận, vẽ hình minh họa và chứng minh định lí nếu một tứ giác có ba góc vuông

Viết giả thiết và kết luận bằng kí hiệu:

Phát biểu giả thiết, kết luận, vẽ hình minh họa và chứng minh định lí nếu một tứ giác có ba góc vuông

Chứng minh định lí:

A^=B^=90° nên AB BC, AB AD.

Do đó BC // AD (hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song)

C^=90° nên BC CD.

Ta có BC // AD và BC CD.

Do đó AD CD (một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng còn lại).

Suy ra D^=90°.

Vậy D^=90°.

Lời giải sách bài tập Toán lớp 7 Bài tập cuối chương 4 Chân trời sáng tạo hay khác:

Xem thêm lời giải sách bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Chân trời sáng tạo khác