Cho tam giác ABC có đường trung tuyến AM đồng thời là đường phân giác góc A

Bài 2 trang 60 sách bài tập Toán lớp 7 Tập 2: Cho tam giác ABC có đường trung tuyến AM đồng thời là đường phân giác góc A. Chứng minh tam giác ABC là tam giác cân.

Lời giải:

Cho tam giác ABC có đường trung tuyến AM đồng thời là đường phân giác góc A

Vẽ đường cao MH của tam giác AMB và vẽ đường cao MK của tam giác AMC.

• Xét ∆AMH và ∆AMK có:

AHM^=AKM^=90°,

AM là cạnh chung,

HAM^=KAM^ (vì AM là tia phân giác của BAC^).

Do đó ∆AMH = ∆AMK (cạnh huyền – góc nhọn).

Suy ra MH = MK (hai cạnh tương ứng).

• Xét ∆BMH và ∆CMK có:

BHM^=CKM^=90°,

MH = MK (chứng minh trên),

BM = CM (vì AM là trung tuyến của tam giác ABC).

Do đó ∆BMH = ∆CMK (cạnh huyền – cạnh góc vuông).

Suy ra B^=C^ (hai góc tương ứng).

Xét tam giác ABC có B^=C^ nên tam giác ABC cân tại A.

Vậy ABC là tam giác cân tại A.

Xem thêm các bài giải sách bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Chân trời sáng tạo khác