Giải SBT Toán 7 trang 9 Tập 1 Cánh diều

Với Giải Sách bài tập Toán 7 trang 9 Tập 1 trong Bài 1: Tập hợp Q các số hữu tỉ SBT Toán 7 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 7 trang 9.

Bài 1 trang 9 Sách bài tập Toán 7 Tập 1: Các số 0,5; 11; 3,111; 457; −34; −1,3; 13;  98 có là số hữu tỉ không? Vì sao?

Lời giải:

Ta có 0,5=12 ; 11=111 ; 3,111=31111000 ; 457=337 ; 34=341; 1,3=1310 .

Vì các số 12 ; 111 ; 31111000 ; 337 ; 341; 1310 ; 13;  98 có dạng ab , với a, b ∈ ℤ, b ≠ 0.

Nên các số 12 ; 111 ; 31111000 ; 337 ; 341; 1310 ; 13;  98  là số hữu tỉ.

Vậy các số 0,5; 11; 3,111; 457; −34; −1,3; 13;  98là số hữu tỉ.

Bài 2 trang 9 Sách bài tập Toán 7 Tập 1: Chọn kí hiệu "∈", "∉" thích hợp cho ?

Giải SBT Toán 7 trang 9 Tập 1 Cánh diều

Lời giải:

∙ Vì −13 là số nguyên âm nên −13 không thuộc tập hợp số tự nhiên.

Do đó Giải SBT Toán 7 trang 9 Tập 1 Cánh diều;

∙ Vì −345 987 là số nguyên âm nên −345 987 thuộc tập hợp số nguyên.

Do đó Giải SBT Toán 7 trang 9 Tập 1 Cánh diều;

∙ Ta có: 0=01 . Vì 0; 1 ∈ ℤ; 1 ≠ 0 nên 01 là số hữu tỉ hay 0 thuộc tập hợp ℚ.

Do đó Giải SBT Toán 7 trang 9 Tập 1 Cánh diều;

∙ Ta có: 103475=78475. Vì 784; 75 ∈ ℤ; 75 ≠ 0 nên 78475 là số hữu tỉ hay 103475 thuộc tập hợp ℚ.

Do đó Giải SBT Toán 7 trang 9 Tập 1 Cánh diều;

∙ Vì 301 Giải SBT Toán 7 trang 9 Tập 1 Cánh diều 756 nên 301756 không thuộc tập hợp số nguyên.

Do đó Giải SBT Toán 7 trang 9 Tập 1 Cánh diều;

∙ Vì 13; −499 ∈ ℤ; −499 ≠ 0 nên 13499 là số hữu tỉ hay 13499 thuộc tập hợp ℚ.

Do đó Giải SBT Toán 7 trang 9 Tập 1 Cánh diều;

∙ Số −11,01 không phải là số nguyên nên Giải SBT Toán 7 trang 9 Tập 1 Cánh diều

∙ Vì −21; −128 ∈ ℤ; −128 ≠ 0 nên 21128 là số hữu tỉ hay 21128 thuộc tập hợp ℚ.

Do đó Giải SBT Toán 7 trang 9 Tập 1 Cánh diều;

∙ Ta có: 0,3274=3  27410  000. Vì 3 274; 10 000 ∈ ℤ; 10 000 ≠ 0 nên 3  27410  000 là số hữu tỉ hay 0,3274 thuộc tập hợp ℚ.

Do đó Giải SBT Toán 7 trang 9 Tập 1 Cánh diều;

Vậy ta điền vào ô trống như sau:

Giải SBT Toán 7 trang 9 Tập 1 Cánh diều

Bài 3 trang 9 Sách bài tập Toán 7 Tập 1: Trong giờ học nhóm, ba bạn An, Bình, Chi lần lượt phát biểu như sau:

- An: "Số 0 là số nguyên và không phải là số hữu tỉ."

- Bình: "Số hữu tỉ là số viết được dưới dạng phân số ab với a, b ∈ ℤ."

- Chi: "Mỗi số nguyên là một số hữu tỉ."

Theo em, bạn nào phát biểu đúng, bạn nào phát biểu sai? Vì sao?

Lời giải:

- An phát biểu sai do 0 viết được dưới dạng phân số 01 nên 0 là số hữu tỉ.

- Bình phát biểu sai do số hữu tỉ là số viết được dưới dạng phân số ab với a, b ∈ ℤ, b ≠ 0.

- Chi phát biểu đúng do mỗi số nguyên a viết được dưới dạng phân số a1.

Bài 4 trang 9 Sách bài tập Toán 7 Tập 1: Quan sát trục số ở Hình 5, điểm nào biểu diễn số hữu tỉ 34 ?

Giải SBT Toán 7 trang 9 Tập 1 Cánh diều

Lời giải:

Giải SBT Toán 7 trang 9 Tập 1 Cánh diều

Ta thấy: 34 là số hữu tỉ dương và 0<34<1 .

Ta chia đoạn thẳng đơn vị thành 4 phần bằng nhau, lấy một đoạn làm đơn vị mới.

Khi đó, điểm biểu diễn số hữu tỉ 34 là điểm nằm bên phải điểm 0 và cách điểm 0 một khoảng bằng 3 lần đơn vị mới.

Do đó điểm C biểu diễn số hữu tỉ 34.

Vậy trên trục số ở Hình 5, điểm C biểu diễn số hữu tỉ 34 .

Bài 5 trang 9 Sách bài tập Toán 7 Tập 1: Tìm số đối của mỗi số hữu tỉ sau: 37221; 931171; 8719  543; 41,02; −791,8.

Lời giải:

Số đối của 37221  là 37221 ;

Số đối của 931171  là 931171=931171 ;

Số đối của 8719  543  là 8719  543=8719  543 ;

Số đối của 41,02 là −41,02;

Số đối của −791,8 là 791,8.

Vậy số đối của các số 37221 ; 931171 ; 8719  543 ; 41,02; −791,8 lần lượt là 37221 ; 931171 ; 8719  543 ; −41,02; 791,8.

Bài 6 trang 9 Sách bài tập Toán 7 Tập 1: Biểu diễn số đối của mỗi số hữu tỉ đã cho trên trục số ở Hình 6.

Giải SBT Toán 7 trang 9 Tập 1 Cánh diều

Lời giải:

Số đối của các số 94 ; 74 ; −1; 12 ; 0; 1; 54  lần lượt là 94 ; 74 ; 1; ; 0; −1; 54 .

Ta có: 12=24 .

Chia đoạn thẳng đơn vị thành 4 đoạn thẳng bằng nhau, ta được đơn vị mới bằng 14  đơn vị cũ.

∙ Số hữu tỉ 94  nằm bên phải điểm 0 và cách điểm 0 một khoảng bằng 9 đơn vị mới.

∙ Số hữu tỉ 74  nằm bên phải điểm 0 và cách điểm 0 một khoảng bằng 7 đơn vị mới.

∙ Số hữu tỉ 12  hay số hữu tỉ 24 nằm bên phải điểm 0 và cách điểm 0 một khoảng bằng 2 đơn vị mới.

∙ Số hữu tỉ 54 nằm bên trái điểm 0 và cách điểm 0 một khoảng bằng 5 đơn vị mới.

Vậy biểu diễn số đối của các số 94 ; 74 ; −1; 12 ; 0; 1; 54  trên trục số như sau:

Giải SBT Toán 7 trang 9 Tập 1 Cánh diều

Lời giải Sách bài tập Toán lớp 7 Bài 1: Tập hợp Q các số hữu tỉ Cánh diều hay khác:

Xem thêm lời giải Sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 7 hay khác:


Giải bài tập lớp 7 Cánh diều khác