Cho tam giác DEF cân tại D có đường trung tuyến EM. Trên tia đối của tia ME lấy điểm N
Bài 78 trang 90 sách bài tập Toán lớp 7 Tập 2: Cho tam giác DEF cân tại D có đường trung tuyến EM. Trên tia đối của tia ME lấy điểm N sao cho MN = ME.
a) Chứng minh DE = FN và tam giác DFN là tam giác cân.
b) Trên tia đối của tia FD lấy điểm A sao cho FA = FD. Chứng minh F là trọng tâm của tam giác NEA.
c) Chứng minh tam giác DNA là tam giác vuông.
d) Kẻ EB vuông góc với NA (B ∈ NA). Chứng minh ba điểm E, F, B thẳng hàng.
Lời giải:
a) Xét ∆DME và ∆FMN có:
DM = FM (vì M là trung điểm của DF),
(hai góc đối đỉnh),
ME = MN (giả thiết)
Do đó ∆DME = ∆FMN (c.g.c)
Suy ra DE = FN (hai cạnh tương ứng).
Vì tam giác DFE cân tại D nên DE = DF.
Do đó DE = DF = FN.
Tam giác DFN có DF = FN nêntam giác DFN cân tại F.
Vậy tam giác DFN cân tại F.
b) Ta có MD = MF = DF và FA = FD nên MF = FA
Mà AF + FM = AM nên AF + AF = AM
Suy ra AF = AM hay AF = AM.
Trong tam giác NEA có AM là trung tuyến và AF = AM nên F là trọng tâm của tam giác NEA.
Vậy F là trọng tâm của tam giác NEA.
c) • Ta có: DF = FN, DF = FA nên AF = FN.
Suy ra tam giác FNA cân tại F.
Do đó (hai góc ở đáy)
•Vì tam giác DFN cân tại F nên (hai góc ở đáy)
• Xét ∆DNA có (tổng ba góc của một tam giác)
Suy ra
Hay
Suy ra
Do đó
Vậy tam giác DNA là tam giác vuông tại N.
d) Xét ∆DMN và ∆FME có:
DM = FM (vì M là trung điểm của DF),
(hai góc đối đỉnh),
EM = MN (giả thiết)
Do đó ∆DMN = ∆FME (c.g.c)
Suy ra (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong
Nên EF // DN
Lại có (chứng minh câu c) hay DN ⊥ NA.
Suy ra EF ⊥ NA (một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại).
Mặt khác EB ⊥ NA (giả thiết)
Suy ra ba điểm E, F, B cùng nằm trên một đường thẳng.
Vậy ba điểm E, F, B thẳng hàng.
Xem thêm các bài giải sách bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 7 hay khác:
- Giải sgk Toán 7 Cánh diều
- Giải SBT Toán 7 Cánh diều
- Giải lớp 7 Cánh diều (các môn học)
- Giải lớp 7 Kết nối tri thức (các môn học)
- Giải lớp 7 Chân trời sáng tạo (các môn học)
- Soạn văn 7 (hay nhất) - Cánh diều
- Soạn văn 7 (ngắn nhất) - Cánh diều
- Giải sgk Toán 7 - Cánh diều
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - Cánh diều
- Giải sgk Lịch Sử 7 - Cánh diều
- Giải sgk Địa Lí 7 - Cánh diều
- Giải sgk Giáo dục công dân 7 - Cánh diều
- Giải sgk Công nghệ 7 - Cánh diều
- Giải sgk Tin học 7 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 7 - Cánh diều
- Giải sgk Âm nhạc 7 - Cánh diều