Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, biết (SAB) vuông góc (ABCD)
Bài 7.24 trang 34 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, biết (SAB) (ABCD), (SAD) (ABCD) và SA = a. Tính côsin của số đo góc nhị diện [S, BD, C] và góc nhị diện [B, SC, D].
Lời giải:
*) Gọi O là giao điểm của AC và BD.
Ta có (SAB) (ABCD), (SAD) (ABCD) nên SA (ABCD). Suy ra SA BD.
Mà AC BD (do ABCD là hình vuông) nên BD (SAC). Do đó BD SO.
Vì BD SO, CO BD nên góc nhị diện [S, BD, C] bằng .
Ta có ABCD là hình vuông cạnh a nên AC = a, AO = .
Vì tam giác SAO vuông tại A nên SO = và cos = -cos = - = -.
Vậy côsin của số đo góc nhị diện [S, BD, C] bằng - .
*) Kẻ BM SC tại M.
Vì ABCD là hình vuông nên BD AC mà BD SA (do SA (ABCD)).
Do đó BD (SAC), suy ra BD SC mà BM SC nên SC (BDM).
Suy ra SC DM.
Xét SAB và SAD có SA chung, = 90o, AB = AD nên SAB = SAD.
Suy ra SB = SD (hai cạnh tương ứng).
Xét SBC và SDC có SB = SD, SC chung, BC = DC nên SBC = SDC.
Suy ra BM = DM (đều là đường cao tương ứng với đáy SC).
Vì BM SC và DM SC nên góc nhị diện [B, SC, D] bằng .
Có BC AB, BC SA (SA (ABCD)) nên BC (SAB) ⇒ BC SB hay tam giác SBC vuông tại B.
Xét tam giác SAB vuông tại A, có SB = .
Xét tam giác SBC vuông tại B, có SC = và
BM.SC = SB.BC DM = BM = .
Áp dụng định lí côsin trong tam giác BDM, có cos.
Vậy côsin của số đo góc nhị diện [B, SC, D] bằng -.
Lời giải SBT Toán 11 Bài 25: Hai mặt phẳng vuông góc hay khác:
Xem thêm lời giải Sách bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Kết nối tri thức
- Giải Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải SBT Toán 11 Kết nối tri thức
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT