Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh bằng a
Bài 7.21 trang 34 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh bằng a, góc BAD bằng 60°. Kẻ OH vuông góc với SC tại H. Biết SA (ABCD) và SA = . Chứng minh rằng:
a) (SBD) (SAC);
b) (SBC) (BDH);
c) (SBC) (SCD).
Lời giải:
a) Ta có SA (ABCD) nên SA BD mà BD AC (do ABCD là hình thoi).
Do đó BD (SAC) mà BD (SBD) nên (SBD) (SAC).
b) Vì BD (SAC) nên BD SC, mà SC OH nên SC (BDH).
Vì SC (SBC) nên (SBC) (BDH).
c) Ta có tam giác ABD có AB = AD = a và = 60o nên tam giác ABD đều.
Suy ra BD = AB = AD = a.
Vì ABCD là hình thoi nên AC là tia phân giác của mà = 60o nên = 30o.
Xét tam giác ADO vuông tại O, có AO = AD . cos30° = . Do đó AC = a.
Xét tam giác SAC vuông tại A, có SC = .
Vì CHO đồng dạng CAS (g.g) nên .
Do đó, tam giác BDH vuông tại H, suy ra = 90o.
Mà BH SC, DH SC (do SC (BDH)) và (SBC) ∩ (SCD) = SC,
BH ⊂ (SBC), DH ⊂ (SCD).
Do đó góc giữa hai mặt phẳng (SBC) và (SCD) là góc giữa hai đường thẳng BH và DH. Mà (DH, BH) = = 90o.
Vậy (SBC) (SCD).
Lời giải SBT Toán 11 Bài 25: Hai mặt phẳng vuông góc hay khác:
Xem thêm lời giải Sách bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm các tài liệu học tốt lớp 11 hay khác:
- Giải sgk Toán 11 Kết nối tri thức
- Giải Chuyên đề học tập Toán 11 Kết nối tri thức
- Giải SBT Toán 11 Kết nối tri thức
- Giải lớp 11 Kết nối tri thức (các môn học)
- Giải lớp 11 Chân trời sáng tạo (các môn học)
- Giải lớp 11 Cánh diều (các môn học)
- Soạn văn 11 (hay nhất) - KNTT
- Soạn văn 11 (ngắn nhất) - KNTT
- Giải sgk Toán 11 - KNTT
- Giải Tiếng Anh 11 Global Success
- Giải sgk Tiếng Anh 11 Smart World
- Giải sgk Tiếng Anh 11 Friends Global
- Giải sgk Vật Lí 11 - KNTT
- Giải sgk Hóa học 11 - KNTT
- Giải sgk Sinh học 11 - KNTT
- Giải sgk Lịch Sử 11 - KNTT
- Giải sgk Địa Lí 11 - KNTT
- Giải sgk Giáo dục KTPL 11 - KNTT
- Giải sgk Tin học 11 - KNTT
- Giải sgk Công nghệ 11 - KNTT
- Giải sgk Hoạt động trải nghiệm 11 - KNTT
- Giải sgk Giáo dục quốc phòng 11 - KNTT
- Giải sgk Âm nhạc 11 - KNTT