Bài 5.51 trang 90 SBT Toán 11 Tập 1

Bài 5.51 trang 90 SBT Toán 11 Tập 1: Cho hàm số fx=1x nê'u x02 nê'u x=0 .

a) Chứng minh rằng f(– 1) ∙ f(1) < 0.

b) Chứng minh rằng phương trình f(x) = 0 không có nghiệm thuộc khoảng (– 1; 1).

c) Có kết luận gì về tính liên tục của hàm số f(x) trên đoạn [– 1; 1]?

Lời giải:

a) Ta có f1=11=1 ; f1=11=1 .

Do đó, f(– 1) ∙ f(1) = (– 1) . (1) = – 1 < 0.

b) Ta thấy f(0) = 2 và fx=1x0 x1; 1\0nên phương trình f(x) = 0 không có nghiệm thuộc khoảng (– 1; 1).

c) Ta có limx0+fx=limx0+1x=+limx0fx=limx01x=.

Suy ra limx0+fx=limx0fx. Nên hàm số đã cho không liên tục tại x = 0.

Vậy hàm số f(x) không liên tục trên đoạn [– 1; 1].

Lời giải SBT Toán 11 Bài tập cuối Chương 5 hay khác:

Xem thêm lời giải Sách bài tập Toán 11 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 Kết nối tri thức khác