Giải SBT Toán 10 trang 80 Tập 1 Chân trời sáng tạo

Với Giải sách bài tập Toán 10 trang 80 Tập 1 trong Bài tập cuối chương 4 SBT Toán 10 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 80.

Bài 1 trang 80 SBT Toán 10 Tập 1: Khẳng định nào sau đây là đúng?

A. sinα = sin( 180° – α );

B. cosα = cos( 180° – α );

C. tanα = tan( 180° – α );

D. cotα = cot( 180° – α );

Lời giải:

Đáp án đúng là A

Ta có sin của hai góc bù nhau thì bằng nhau. Côsin, tan và côtan của hai góc bù nhau thì đối nhau. Vậy khẳng định đúng là A.

Bài 2 trang 80 SBT Toán 10 Tập 1: Trong các khẳng định sau đây, khẳng định nào sai?

A. cos45° = sin45°;

B. cos45° = sin135°;

C. cos30° = sin120°;

D. sin60° = cos120°.

Lời giải:

Đáp án đúng là D

cos45° = sin( 90° – 45° ) = sin45°. Khẳng định A đúng.

cos45° = sin( 90° – 45° ) = sin45° = sin ( 180° – 45° ) = sin135°. Khẳng định B đúng.

cos30° = sin ( 90° – 30° ) = sin60° = sin ( 180° – 60° ) = sin120°. Khẳng định C đúng.

Có sin60° = cos30° ≠ cos120°. Khẳng định D sai.

Vậy chọn đáp án D.

Bài 3 trang 80 SBT Toán 10 Tập 1: Bất đẳng thức nào dưới đây là đúng?

A. sin90° < sin150°;

B. sin90°15’ < sin90°30’;

C. cos90°30’ > cos100°;

D. cos150° > cos120°.

Lời giải:

Đáp án đúng là C

Ta có:

sin90° = 1 mà sin150° = 12 sin90° > sin150°. Vì vậy A sai.

sin90°15’ = 0,99999, sin90°30’ = 0,99996 sin90°15’ > sin90°30’. Vì vậy B sai.

cos90°30’ ≈ – 8,72. 10-3 , cos100° ≈ – 0,17 cos90°30’ > cos100°. Vì vậy C đúng.

cos150° = 32, cos120° = 12 cos150° < cos120°. Vì vậy D sai.

Chọn đáp án C.

Bài 4 trang 80 SBT Toán 10 Tập 1: Trong các đẳng thức sau đây, đẳng thức nào là đúng?

A. sin150° = 32;

B. cos150° = 32;

C. tan150° = 13;

D. cot150° = 3.

Lời giải:

Đáp án đúng là C

Sử dụng máy tính cầm tay ta tính được

sin150° = 12, cos150° = 32, tan150° = 13, cot150° = 3.

Vậy khẳng định C đúng.

Bài 5 trang 80 SBT Toán 10 Tập 1: Cho tam giác ABC có BC = a, AC = b, AB = c. Mệnh đề nào sau đây đúng?

A. Nếu b2 + c2 – a2 > 0 thì góc A nhọn;

B. Nếu b2 + c2 – a2 > 0 thì góc A tù;

C. Nếu b2 + c2 – a2 < 0 thì góc A nhọn;

D. Nếu b2 + c2 – a2 < 0 thì góc A vuông.

Lời giải:

Đáp án đúng là A

Theo định lí côsin ta có: a2 = b2 + c2 – 2bccosA

Nếu b2 + c2 – a2 > 0 hay b2 + c2 > a2 thì 2bccosA > 0 hay cosA > 0 ( b,c là cạnh tam giác nên b,c > 0 ). Khi đó A^ < 90° hay góc A nhọn.

Nếu b2 + c2 – a2 < 0 hay b2 + c2 < a2 thì 2bccosA < 0 hay cosA < 0 ( b,c là cạnh tam giác nên b,c > 0 ). Khi đó A^ > 90° hay góc A tù.

Như vậy đáp án đúng là A.

Bài 6 trang 80 SBT Toán 10 Tập 1: Cho tam giác ABC có AB = 4 cm, BC = 7 cm, CA = 9 cm. Giá trị cosA là:

A. 23;

B. 13;

C. 23;

D. 12.

Lời giải:

Đáp án đúng là A

Áp dụng hệ quả định lí côsin ta có:

cosA = AC2+AB2BC22AB.AC​ = 42+92722.4.9 = 23.

Vậy chọn đáp án A.

Bài 7 trang 80 SBT Toán 10 Tập 1: Cho tam giác ABC có AB = 8 cm, AC = 18 cm và có diện tích bằng 64cm2. Giá trị sinA là:

A. 32;

B. 38;

C. 45;

D. 89.

Lời giải:

Đáp án đúng là D

Ta có: S = 12AB.AC. sinA sinA = 2SAB.AC = 64.218.8=89.

Vậy đáp án đúng là D.

Bài 8 trang 80 SBT Toán 10 Tập 1: Cho tam giác ABC vuông cân tại A có AB = AC = 30 cm. Hai đường trung tuyến BF và CE cắt nhau tại G. Diện tích tam giác GFC là:

A. 50 cm2;

B. 502 cm2;

C. 75 cm2;

D. 15105 cm2.

Lời giải:

Đáp án đúng là C

Cho tam giác ABC vuông cân tại A có AB = AC = 30 cm

Kẻ GH vuông góc với AC.

G là trọng tâm tam giác ABC GF = 13BF .

Xét tam giác GFH và tam giác BFA:

GHF^=BAF^ = 90°

GFH^=BFA^ (hay chung GFH^)

tam giác GFH và tam giác BFA đồng dạng (g.g)

GHAB=GFBF=13 ( Tính chất hai tam giác đồng dạng)

GH = 10 cm

Lại có FC = 12AC = 15 cm

SGFC = 10.15. 12 = 75 cm2

Vậy đáp án C đúng.

Lời giải sách bài tập Toán lớp 10 Bài tập cuối chương 4 Chân trời sáng tạo hay khác:

Xem thêm lời giải Sách bài tập Toán 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Chân trời sáng tạo khác