Lập phương trình đường tròn ngoại tiếp tam giác có toạ độ các đỉnh là

Bài 3 trang 70 SBT Toán 10 Tập 2: Lập phương trình đường tròn ngoại tiếp tam giác có toạ độ các đỉnh là:

a) A(1; 4), B(0; 1), C(4; 3);

b) O(0; 0), P(16; 0), R(0; 12).

Lời giải:

a) Phương trình đường tròn ngoại tiếp tam giác ABC với A(1; 4), B(0; 1), C(4; 3)

Gọi I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC

AI=(x1;y4);BI=(x;y1);CI=(x4;y3)

Lập phương trình đường tròn ngoại tiếp tam giác có toạ độ các đỉnh là

Suy ra I(2; 2)

Bán kính R = IB ta có IB = IB mà IB=(2;1) suy ra IB=(2)2+(1)2=5

Vậy phương trình đường tròn (C) có tâm I(2; 2) và bán kính R = √5 là:

(x – 2)2 + (y – 2)2 = 5.

b) Phương trình đường tròn ngoại tiếp tam giác OPR với O(0; 0), P(16; 0), R(0; 12).

Ta có: OP16;0;  OR0;12 ⇒ OP  .  OR = 16.0 + 0.12 = 0.

⇒ OP ⊥ OR

Do đó tam giác OPR vuông tại O nên tâm đường tròn ngoại tiếp tam giác OPR là trung điểm của PR và bán kính R = OI.

Gọi I(x; y) là tâm đường tròn ngoại tiếp tam giác OPR

Suy ra Lập phương trình đường tròn ngoại tiếp tam giác có toạ độ các đỉnh là. Do đó tâm I(8; 6)

Bán kính R = OI mà OI=(8;6) suy ra OI=82+62=10

Vậy phương trình đường tròn ngoại tiếp tam giác OPR có tâm I(8; 6) bán kính R = 10 là: (x – 8)2 + (y – 6)2 = 100.

Lời giải SBT Toán 10 Bài 3: Đường tròn trong mặt phẳng toạ độ hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Chân trời sáng tạo khác