Giải SBT Toán 10 trang 13 Tập 2 Cánh diều

Với giải Sách bài tập Toán 10 trang 13 Tập 2 trong Bài 3: Tổ hợp SBT Toán 10 Cánh diều Tập 2 hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 13.

Bài 20 trang 13 SBT Toán 10 Tập 2: Cho tập hợp A gồm n phần tử và một số nguyên k với 1 ≤ k ≤ n. Mỗi tổ hợp chập k của n phần tử đó là:

A. Tất cả kết quả của việc lấy k phần tử từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó.

B. Một tập con gồm k phần tử được lấy ra từ n phần tử của A.

C. Một kết quả của việc lấy k phần tử từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó.

D. Tất cả tập con gồm k phần tử được lấy ra từ n phần tử của A.

Lời giải:

Đáp án đúng là B

Cho tập hợp A gồm n phần tử và một số nguyên k với 1 ≤ k ≤ n.

Mỗi tập con gồm k phần tử được lấy ra từ n phần tử của A được gọi là một tổ hợp chập k của n phần tử đó.

Vậy ta chọn phương án B.

Bài 21 trang 13 SBT Toán 10 Tập 2: Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?

A. Cnk=Ankk!.

B. Cnk=Cnnk.

C. Cnk=Anknk!.

D. Cnk=n!k!nk!.

Lời giải:

Đáp án đúng là B

Cho k, n là các số nguyên dương, k ≤ n.

Ta có Cnk=Ankk!=Cnk=n!k!nk!.

Do đó phương án A, D đúng.

Theo tính chất của các số Cnk, ta có Cnk=Cnnk.

Do đó phương án B đúng.

Suy ra phương án C sai.

Vậy ta chọn phương án C.

Bài 22 trang 13 SBT Toán 10 Tập 2: Tính số đoạn thẳng có hai đầu mút là 2 trong 10 điểm phân biệt.

Lời giải:

Mỗi đoạn thẳng tương ứng với một cặp điểm (không tính thứ tự) chọn trong 10 điểm phân biệt đã cho.

Mỗi cách chọn 2 trong 10 điểm phân biệt là một tổ hợp chập 2 của 10.

Số cách chọn 2 trong 10 điểm phân biệt là: C102 = 45 (cách chọn).

Vậy có 45 đoạn thẳng thỏa mãn yêu cầu bài toán.

Bài 23 trang 13 SBT Toán 10 Tập 2: Cho n điểm phân biệt (n > 1). Biết rằng, số đoạn thẳng có hai đầu mút là 2 trong n điểm đã cho bằng 78. Tìm n.

Lời giải:

Số đoạn thẳng có 2 đầu mút là 2 trong n điểm đã cho là: Cn2=n!2!n2!.

Theo đề, ta có số đoạn thẳng có hai đầu mút là 2 trong n điểm đã cho bằng 78.

Tức là, n!2!n2! = 78.

Suy ra n2!.n1.n2.n2! = 78.

Khi đó n1.n2 = 78.

Do đó n2 – n = 156.

Vì vậy n2 – n – 156 = 0.

Suy ra n = 13 hoặc n = –12.

Vì n > 1 nên ta nhận n = 13.

Vậy n = 13 thỏa mãn yêu cầu bài toán.

Lời giải sách bài tập Toán lớp 10 Bài 3: Tổ hợp Cánh diều hay khác:

Xem thêm lời giải Sách bài tập Toán 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác