Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai

Bài 16 trang 9 SBT Toán 10 Tập 1: Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của mỗi mệnh đề phủ định đó.

a) ∀n ∈ ℕ, n(n + 1) chia hết cho 2;

b) ∀x ∈ ℝ, x2 > x;

c) ∃x ∈ ℝ, |x| > x;

d) ∃x ∈ ℚ, x2 – x – 1 = 0.

Lời giải:

a) Gọi A: “∀n ∈ ℕ, n(n + 1) chia hết cho 2”

Mệnh đề phủ định của mệnh đề A: “∀n ∈ ℕ, n(n + 1) chia hết cho 2” là A¯: “∃n ∈ ℕ, n(n + 1) không chia hết cho 2”.

+) Xét tính đúng sai:

Với n = 2k (k ∈ ℕ) khi đó n.(n + 1) = 2k.(2k + 1) chia hết cho 2.

Với n = 2k + 1 (k ∈ ℕ) khi đó n.(n + 1) = (2k + 1).(2k + 2) = (2k + 1)(k + 1).2 chia hết cho 2.

Suy ra với mọi giá trị của n thì n(n + 1) chia hết cho 2. Do đó mệnh đề A đúng và A¯ sai.

b) Gọi B: “∀x ∈ ℝ, x2 > x”

Mệnh đề phủ định của mệnh đề B: “∀x ∈ ℝ, x2 > x” là B¯: “∃x ∈ ℝ, x2 ≤ x”.

Xét x2 > x

⇔ x2 – x > 0

⇔ x(x – 1) > 0

x>0x1>0x<0x1<0x>1x<0

Suy ra không phải với mọi số thực x thì x2 > x.

Do đó mệnh đề B sai, mệnh đề B¯ đúng.

c) Gọi C: “∃x ∈ ℝ, |x| > x”.

Mệnh đề phủ định của mệnh đề C: “∃x ∈ ℝ, |x| > x” là mệnh đề C¯: “∀x ∈ ℝ, |x| ≤ x”.

Ta luôn có |x| ≥ x với mọi giá trị thực của x. Do đó mệnh đề C là mệnh đề đúng, mệnh đề C¯ là mệnh đề sai.

d) Gọi D: “∃x ∈ ℚ, x2 – x – 1 = 0”

Mệnh đề phủ định của mệnh đề C: “∃x ∈ ℚ, x2 – x – 1 = 0” là mệnh đề : “∀x ∈ ℚ, x2 – x – 1 ≠ 0”.

Xét phương trình x2 – x – 1 = 0

Có: ∆ = (-1)2 – 4.1.(-1) = 1 + 4 = 5 > 0

Khi đó phương trình có hai nghiệm x1=1+52x2=152.

1+52;152

Do đó không tồn tại số hữu tỉ x nào để x2 – x – 1 = 0.

Vì vậy mệnh đề C sai và mệnh đề C¯ đúng.

Xem thêm các bài giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 Cánh diều khác