Giải bài 3 trang 63 SGK Hình Học 12 nâng cao



Bài 3 (trang 63 sgk Hình Học 12 nâng cao): Cho hai đường tròn (O, r) và (O’, r’) cắt nhau tại hai điểm A, B và lần lượt nằm trên hai mặt phẳng phân biệt (P) và (P’).

a) Chứng minh rằng có mặt cầu (S) đi qua đường tròn đó

b) Tính bán kính của R của mặt cầu (S) khi r = 5, r’ = √10, AB = 6, OO’ = √21

Lời giải:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

a) Gọi M là trung điểm của AB thì OM ⊥AB,O' M⊥AB. Do (P) và (P’) phân biệt nên ba điểm O, M, O’ không thẳng hàng.

Từ đó AB ⊥ mặt phẳng (OMO’).

Gọi Δ và Δ' lần lượt là trục của đường tròn (O, r) và (O’, r’) thì Δ và Δ' cùng vuông góc với AB.

Từ đó suy ra Δ và Δ' cùng nằm trong mặt phẳng (OMO’). Δvà Δ' cắt nhau tại điểm I. Khi đấy mặt cầu (C ) có tâm I và bán kính R = IB là mặt cầu cần tìm.

b)Ta có:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Tương tự: O’M = 1

Xét ΔOMO' ta có:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Như vậy R2=IB2+IO2=25+12=37 tức R = √37

Vậy R=√37

Các bài giải bài tập Hình học 12 nâng cao Ôn tập chương 2 khác:

Câu hỏi tự kiểm tra

Bài tập

Câu hỏi trắc nghiệm


on-tap-chuong-2.jsp


Giải bài tập lớp 12 sách mới các môn học