Sách bài tập Toán 8 Bài 5: Phương trình chứa dấu giá trị tuyệt đối
Bài 65 trang 59 sách bài tập Toán 8 Tập 2: Giải các phương trình:
a. |0,5x| = 3 – 2x
b. |-2x| = 3x + 4
c. |5x| = x – 12
d. |-2,5x| = 5 + 1,5x
Lời giải:
a. Ta có: |0,5x| = 0,5x khi 0,5x ≥ 0 ⇔ x ≥ 0
|0,5x| = -0,5x khi 0,5x < 0 ⇔ x < 0
Ta có: 0,5x = 3 – 2x ⇔ 0,5x + 2x = 3 ⇔ 2,5x = 3 ⇔ x = 1,2
Giá trị x = 1,2 thỏa mãn điều kiện x ≥ 0 nên 1,2 là nghiệm của phương trình.
-0,5x = 3 – 2x ⇔ -0,5x + 2x = 3 ⇔ 1,5x = 3 ⇔ x = 2
Giá trị x = 2 không thỏa mãn điều kiện x < 0 nên loại.
Vậy tập nghiệm của phương trình là S = {1,2}
b. Ta có: |-2x| = -2x khi -2x ≥ 0 ⇔ x ≤ 0
|-2x| = 2x khi -2x < 0 ⇔ x > 0
Ta có: 2x = 3x + 4 ⇔ 2x – 3x = 4 ⇔ -x = 4 ⇔ x = -4
Giá trị x = -4 không thỏa mãn điều kiện x > 0 nên loại.
-2x = 3x + 4 ⇔ -2x – 3x = 4 ⇔ -5x = 4 ⇔ x = -0,8
Giá trị x = -0,8 thỏa mãn điều kiện x ≤ 0 nên -0,8 là nghiệm của phương trình.
Vậy tập nghiệm của phương trình là S = {-0,8}.
c. Ta có: |5x| = 5x khi 5x ≥ 0 ⇔ x ≥ 0
|5x| = -5x khi 5x < 0 ⇔ x < 0
Ta có: 5x = x – 12 ⇔ 5x – x = -12 ⇔ 4x = -12 ⇔ x = -3
Giá trị x = -3 không thỏa mãn điều kiện x ≥ 0 nên loại.
-5x = x – 12 ⇔ -5x – x = -12 ⇔ -6x = -12 ⇔ x = 2
Giá trị x = 2 không thỏa mãn điều kiện x < 0 nên loại.
Vậy phương trình vô nghiệm. Tập nghiệm là S = ∅
d. Ta có: |-2,5x| = -2,5x khi -2,5x ≥ 0 ⇔ x ≤ 0
|-2,5x| = 2,5x khi -2,5x < 0 ⇔ x > 0
Ta có: -2,5x = 5 + 1,5x ⇔ -2,5x – 1,5x = 5 ⇔ -4x = 5 ⇔ x = -1,25
Giá trị x = -1,25 thỏa mãn điều kiện x ≤ 0 nên -1,25 là nghiệm của phương trình.
2,5x = 5 + 1,5x ⇔ 2,5x – 1,5x = 5 ⇔ x = 5
Giá trị x = 5 thỏa mãn điều kiện x > 0 nên 5 là nghiệm của phương trình.
Vậy tập nghiệm của phương trình là S = {-1,25; 5}
Bài 66 trang 59 sách bài tập Toán 8 Tập 2: Giải các phương trình:
a. |9 + x| = 2x
b. |x – 1| = 3x + 2
c. |x + 6| = 2x + 9
d. |7 – x| = 5x + 1
Lời giải:
a. Ta có: |9 + x| = 9 + x khi 9 + x ≥ 0 ⇔ x ≥ -9
|9 + x| = - (9 + x) khi 9 + x < 0 ⇔ x < -9
Ta có: 9 + x = 2x ⇔ 9 = 2x – x ⇔ x = 9
Giá trị x = 9 thỏa mãn điều kiện x ≥ -9 nên 9 là nghiệm của phương trình.
- (9 + x) = 2x
⇔ -9 = 2x + x
⇔ -9 = 3x
⇔ x = -3
Giá trị x = -3 không thỏa mãn điều kiện x < -9 nên loại.
Vậy Tập nghiệm của phương trình: S = {9}
b. Ta có: |x – 1| = x – 1 khi x – 1 ≥ 0
⇔ x ≥ 1
|x – 1| = 1 – x khi x – 1 < 0
⇔x < 1
Ta có: x – 1 = 3x + 2
⇔ x – 3x = 2 + 1
⇔ x = -1,5
Giá trị x = -1,5 không thỏa mãn điều kiện x ≥ 1 nên loại.
1 – x = 3x + 2
⇔ -x – 3x = 2 – 1
⇔ -4x = 1
⇔ x = -0,25
Giá trị x = -0,25 thỏa mãn điều kiện x < 1 nên -0,25 là nghiệm của phương trình.
Vậy tập nghiệm của phương trình là S = {-0,25}.
c. Ta có: |x + 6| = x + 6 khi x + 6 ≥ 0
⇔ x ≥ -6
|x + 6| = -x – 6 khi x + 6 < 0
⇔ x < -6
Ta có: x + 6 = 2x + 9
⇔ x – 2x = 9 – 6
⇔ -x = 3
⇔ x = -3
Giá trị x = -3 thoả mãn điều kiện x ≥ -6 nên -3 là nghiệm của phương trình.
-x – 6 = 2x + 9
⇔ -x – 2x = 9 + 6
⇔ -3x = 15
⇔ x = -5
Giá trị x = -5 không thỏa mãn điều kiện x < -6 nên loại.
Vậy tập nghiệm của phương trình: S = {-3}
d. Ta có: |7 – x| = 7 – x khi 7 – x ≥ 0
⇔ x ≤ 7
|7 – x| = x – 7 khi 7 – x < 0
⇔ x > 7
Ta có: 7 – x = 5x + 1
⇔ 7 – 1 = 5x + x
⇔ 6x = 6
⇔ x = 1
Giá trị x = 1 thỏa điều kiện x ≤ 7 nên 1 là nghiệm của phương trình.
x – 7 = 5x + 1
⇔ x – 5x = 1 + 7
⇔ -4x = 8
⇔ x = -2
Giá trị x = -2 không thỏa mãn điều kiện x > 7 nên loại.
Vậy tập nghiệm của phương trình là S = {1}
Bài 67 trang 60 sách bài tập Toán 8 Tập 2: Giải các phương trình:
a. |5x| - 3x – 2 = 0
b. x – 5x + |-2x| - 3 = 0
c. |3 – x| + x2 – (4 + x)x = 0
d. (x – 1)2 + |x + 21| - x2 – 13 = 0
Lời giải:
a. Ta có: |5x| = 5x khi 5x ≥ 0 ⇔ x ≥ 0
|5x| = -5x khi 5x < 0 ⇔ x < 0
TH1 : 5x – 3x – 2 = 0
⇔ 2x = 2
⇔ x = 1
Giá trị x = 1 thỏa mãn điều kiện x ≥ 0 nên 1 là nghiệm của phương trình.
TH2 : -5x – 3x – 2 = 0
⇔ -8x = 2
⇔ x = -0,25
Giá trị x = -0,25 thỏa mãn điều kiện x < 0 nên -0,25 là nghiệm của phương trình.
Vậy tập nghiệm của phương trình là S = {1; -0,25}
b. Ta có: |-2x| = -2x khi -2x ≥ 0 ⇔ x ≤ 0
|-2x| = 2x khi -2x < 0 ⇔ x > 0
TH1 : x – 5x – 2x – 3 = 0
⇔ -6x = 3
⇔ x = -0,5
Giá trị x = -0,5 thỏa mãn điều kiện x ≤ 0 nên -0,5 là nghiệm của phương trình.
TH2 : x – 5x + 2x – 3 = 0
⇔ -2x = 3
⇔ x = -1,5
Giá trị x = -1,5 không thỏa mãn điều kiện x > 0 nên loại.
Vậy tập nghiệm của phương trình là S = {-0,5}
c. Ta có: |3 – x| = 3 – x khi 3 – x ≥ 0 ⇔ x ≤ 3
|3 – x| = x – 3 khi 3 – x < 0 ⇔ x > 3
TH1 : 3 – x + x2 – (4 + x)x = 0
⇔ 3 – x + x2 – 4x – x2 = 0
⇔ 3 – 5x = 0
⇔ x = 0,6
Giá trị x = 0,6 thỏa mãn điều kiện x ≤ 3 nên 0,6 là nghiệm của phương trình.
TH2 : x – 3 + x2 – (4 + x)x = 0
⇔ x – 3 + x2 – 4x – x2 = 0
⇔ -3x – 3 = 0
⇔ x = -1
Giá trị x = -1 không thỏa mãn điều kiện x > 3 nên loại.
Vậy tập nghiệm của phương trình là S = {0,6}
d. Ta có: |x + 21| = x + 21 khi x + 21 ≥ 0 ⇔ x ≥ -21
|x + 21| = -x – 21 khi x + 21 < 0 ⇔ x < -21
TH1 : (x – 1)2 + x + 21 – x2 – 13 = 0
⇔ x2 – 2x + 1 + x + 21 – x2 – 13 = 0
⇔ -x + 9 = 0
⇔ x = 9
Giá trị x = 9 thỏa mãn điều kiện x ≥ -21 nên 9 là nghiệm của phương trình.
TH2: (x – 1)2 – x – 21 – x2 – 13 = 0
⇔ x2 – 2x + 1 – x – 21 – x2 – 13 = 0
⇔ -3x – 33 = 0
⇔ x = -33/3 = -11
Giá trị x = -11 không thỏa mãn điều kiện x < -21 nên loại.
Vậy tập nghiệm của phương trình là S = {9}
Bài 68 trang 60 sách bài tập Toán 8 Tập 2: Giải các phương trình:
a. |x – 5| = 3
b. |x + 6| = 1
c. |2x – 5| = 4
d. |3 – 7x| = 2
Lời giải:
a. Ta có: |x – 5| = x – 5 khi x – 5 ≥ 0 ⇔ x ≥ 5
|x – 5| = 5 – x khi x – 5 < 0 ⇔ x < 5
Ta có: x – 5 = 3
⇔ x = 8
Giá trị x = 8 thỏa mãn điều kiện x ≥ 5 nên 8 là nghiệm của phương trình.
5 – x = 3
⇔ 5 – 3 = x
⇔ x = 2
Giá trị x = 2 thỏa mãn điều kiện x < 5 nên 2 là nghiệm của phương trình.
Vậy tập nghiệm của phương trình là S = {8; 2}
b. Ta có: |x + 6| = x + 6 khi x + 6 ≥ 0 ⇔ x ≥ -6
|x + 6| = -x – 6 khi x + 6 < 0 ⇔ x < -6
Ta có: x + 6 = 1
⇔ x = -5
Giá trị x = -5 thỏa mãn điều kiện x ≥ -6 nên -5 là nghiệm của phương trình.
-x – 6 = 1
⇔ -x = 1 + 6
⇔ -x = 7
⇔ x = -7
Giá trị x = -7 thỏa mãn điều kiện x < -6 nên -7 là nghiệm của phương trình.
Vậy tập nghiệm của phương trình là S = {-5; -7}
c. Ta có: |2x – 5| = 2x – 5 khi 2x – 5 ≥ 0 ⇔ x ≥ 2,5
|2x – 5| = 5 – 2x khi 2x – 5 < 0 ⇔ x < 2,5
Ta có: 2x – 5 = 4
⇔ 2x = 9
⇔ x = 4,5
Giá trị x = 4,5 thỏa mãn điều kiện x ≥ 2,5 nên 4,5 là nghiệm của phương trình.
5 – 2x = 4
⇔ -2x = -1
⇔ x = 0,5
Giá trị x = 0,5 thỏa mãn điều kiện x < 2,5 nên 0,5 là nghiệm của phương trình.
Vậy tập nghiệm của phương trình là S = {4,5; 0,5}
d. Ta có: |3 – 7x| = 3 – 7x khi 3 – 7x ≥ 0 ⇔ x ≤ 3/7
|3 – 7x| = 7x – 3 khi 3 – 7x < 0 ⇔ x > 3/7
Ta có: 3 – 7x = 2
⇔ -7x = -1
⇔ x = 1/7
Giá trị x = 1/7 thỏa mãn điều kiện x ≤ 3/7 nên 1/7 là nghiệm của phương trình.
7x – 3 = 2
⇔ 7x = 5
⇔ x = 5/7
Giá trị x = 5/7 thỏa mãn điều kiện x > 3/7 nên 5/7 là nghiệm của phương trình.
Vậy tập nghiệm của phương trình là S = {1/7 ; 5/7 }
Bài 69 trang 60 sách bài tập Toán 8 Tập 2: Giải các phương trình:
a. |3x – 2| = 2x
b. |4 + 2x| = -4x
c. |2x – 3| = -x + 21
d. |3x – 1| = x – 2
Lời giải:
a. Ta có: |3x – 2| = 3x – 2 khi 3x – 2 ≥ 0 ⇔ x ≥ 2/3
|3x – 2| = 2 – 3x khi 3x – 2 < 0 ⇔ x < 2/3
Ta có: 3x – 2 = 2x
⇔ x = 2
Giá trị x = 2 thỏa mãn điều kiện x ≥ 2/3 nên 2 là nghiệm của phương trình.
2 – 3x = 2x
⇔ 2 = 5x
⇔ x = 2/5
Giá trị x = 2/5 thỏa mãn điều kiện x < 2/3 nên 2/5 là nghiệm của phương trình.
Vậy tập nghiệm của phương trình là S = {2; 2/5 }
b. Ta có: |4 + 2x| = 4 + 2x khi 4 + 2x ≥ 0 ⇔ x ≥ -2
|4 + 2x| = -4 – 2x khi 4 + 2x < 0 ⇔ x < -2
Ta có: 4 + 2x = -4x
⇔ 6x = - 4
⇔ x = - 2/3
Giá trị x = - 2/3 thỏa mãn điều kiện x ≥ -2 nên - 2/3 là nghiệm của phương trình.
-4 – 2x = -4x
⇔ -4 = -2x
⇔ x = 2
Giá trị x = 2 không thỏa mãn điều kiện x < -2 nên loại.
Vậy tập nghiệm của phương trình là S = {-2/3 }
c. Ta có: |2x – 3| = 2x – 3 khi 2x – 3 ≥ 0 ⇔ x ≥ 1,5
|2x – 3| = 3 – 2x khi 2x – 3 < 0 ⇔ x < 1,5
Ta có: 2x – 3 = -x + 21
⇔ 3x = 24
⇔ x = 8
Giá trị x = 8 thỏa mãn điều kiện x ≥ 1,5 nên 8 là nghiệm của phương trình.
3 – 2x = -x + 21
⇔ -x = 18
⇔ x = -18
Giá trị x = -18 thỏa mãn điều kiện x < 1,5 nên -18 là nghiệm của phương trình.
Vậy tập nghiệm của phương trình là S = {8; -18}
d. Ta có: |3x – 1| = 3x – 1 khi 3x – 1 ≥ 0 ⇔ x ≥ 1/3
|3x – 1| = 1 – 3x khi 3x – 1 < 0 ⇔ x < 1/3
Ta có: 3x – 1 = x – 2
⇔ 2x = -1
⇔ x = - 1/2
Giá trị x = - 1/2 không thỏa mãn điều kiện x ≥ 1/3 nên loại.
1 – 3x = x – 2
⇔ -3x – x = -2 – 1
⇔ -4x = -3
⇔ x = 3/4
Giá trị x = 3/4 không thỏa mãn điều kiện x < 1/3 nên loại.
Vậy phương trình đã cho vô nghiệm. Tập nghiệm là S = ∅
Bài 70 trang 60 sách bài tập Toán 8 Tập 2: Với giá trị nào của x thì:
a. |2x – 3| = 2x – 3
b. |5x – 4| = 4 – 5x
Lời giải:
a. Ta có: |2x – 3| = 2x – 3
⇒ 2x – 3 ≥ 0
⇔ 2x ≥ 3
⇔ x ≥ 1,5
Vậy với x ≥ 1,5 thì |2x – 3| = 2x – 3.
b. Ta có: |5x – 4| = 4 – 5x
⇒ 5x – 4 < 0
⇔ 5x < 4
⇔ x < 0,8
Vậy với x < 0,8 thì |5x – 4| = 4 – 5x.
Bài 5.1 trang 60 sách bài tập Toán 8 Tập 2: Khoanh tròn vào chữ cái trước khẳng định đúng.
Bỏ dấu giá trị tuyệt đối của biểu thức |−5x| ta được biểu thức:
A. -5x với x > 0 và 5x với x < 0
B. -5x với x ≥ 0 và 5x với x < 0
C. 5x với x > 0 và -5x với x < 0
D. -5x với x ≤ 0 và 5x với x > 0
Lời giải:
Chọn D
Bài 5.2 trang 60 sách bài tập Toán 8 Tập 2: Khoanh tròn vào chữ cái trước khẳng định đúng.
Bỏ dấu giá trị tuyệt đối của biểu thức |x−2| ta được biểu thức:
A. x – 2 với x > 2 và 2 – x với x < 2
B. x – 2 với x ≥ 2 và 2 – x với x < 2
C. x – 2 với x > 0 và 2 – x với x < 0
D. x – 2 với x ≥ 0 và 2 – x với x < 0
Lời giải:
Chọn B
Bài 5.3 trang 60 sách bài tập Toán 8 Tập 2: Tìm x sao cho |2x − 4| = 6
Lời giải:
Cách 1: ta đưa về giải hai phương trình
2x – 4 = 6 và 2x – 4 = -6
Kết quả tìm được x = 5 và x = -1
Cách 2: ta có|2x − 4| = 2x − 4 khi 2x − 4 ≥ 0
và |2x − 4| = 4 − 2x khi 2x − 4 < 0
Ta có: 2x − 4 ≥ 0
⇔ 2x ≥ 4
⇔ x ≥ 2
và 2x − 4 < 0
⇔2x < 4
⇔x < 2
Vậy, ta đưa về bài toán tìm x sao cho
2x – 4 = 6 khi x ≥ 2
và 4 – 2x = 6 khi x < 2
Do 2x – 4 = 6
⇔x = 5 mà 5 thỏa mãn x ≥ 2 nên chọn nghiệm x = 5
Do 4 – 2x = 6
⇔−2x = 2
⇔ x = −1
Ta thấy x = -1 thỏa mãn x < 2 nên chọn nghiệm x = -1
Vậy tìm được x = 5 và x = -1 thì có|2x − 4| = 6
Xem thêm các bài giải sách bài tập Toán lớp 8 chọn lọc, chi tiết khác:
- Ôn tập chương 4
- Bài 1: Định lí Ta-lét trong tam giác
- Bài 2: Định lí đảo và hệ quả của định lí Ta-lét
- Bài 3: Tính chất đường phân giác của tam giác
Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Lớp 8 - Kết nối tri thức
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) KNTT
- Giải sgk Toán 8 - KNTT
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT
- Lớp 8 - Chân trời sáng tạo
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST
- Lớp 8 - Cánh diều
- Soạn văn 8 Cánh diều (hay nhất)
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Toán 8 - Cánh diều
- Giải sgk Khoa học tự nhiên 8 - Cánh diều
- Giải sgk Lịch Sử 8 - Cánh diều
- Giải sgk Địa Lí 8 - Cánh diều
- Giải sgk Giáo dục công dân 8 - Cánh diều
- Giải sgk Tin học 8 - Cánh diều
- Giải sgk Công nghệ 8 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 - Cánh diều
- Giải sgk Âm nhạc 8 - Cánh diều