Sách bài tập Toán 8 Bài 4: Diện tích hình thang
Bài 32 trang 161 SBT Toán 8 Tập 1: Tìm x, biết đa giác ở hình vẽ có diện tích bằng 3375 m2
Lời giải:
Hình đa giác đã cho gồm một hình thang và một hình tam giác.
Diện tích phần hình thang là S1, tam giác là S2, ta có:
Tam giác có chiều cao h ứng với cạnh đáy là 70 m
Diện tích tam giác là:
Suy ra: Chiều cao h của tam giác là:
Vậy x = 45 + 30 = 75 (m)
Bài 33 trang 161 SBT Toán 8 Tập 1: Cho hình chữ nhật ABCD có cạnh AB = 5cm, BC = 3cm. Vẽ hình bình hành ABEF có cạnh AB = 5cm và diện tích bằng diện tích hình chữ nhật. Vẽ được bao nhiêu hình như vậy ?
Lời giải:
Trên cạnh CD ta lấy 1 điểm E bất kỳ (E khác C và D). Nối BE. Từ A kẻ đường thẳng song song với BE cắt đường thẳng CD tại F.
Tứ giác ABEF có các cạnh đối song song với nhau nên ABEF là hình bình hành
SABEF = AD.EF = AD. AB ( AB = EF vì ABEF là hình bình hành)
Diện tích hình chữ nhật: SABCD = AB.AD
⇒ SABCD = SABEF
Có thể vẽ được vô số hình như vậy.
Bài 34 trang 161 SBT Toán 8 Tập 1: Cho hình chữ nhật ABCD có cạnh AB = 5cm, BC=3cm. Vẽ hình bình hành ABEF có cạnh AB = 5cm, BE = 5cm và có diện tích bằng diện tích của hình chữ nhật ABCD. Vẽ được mấy hình như vậy?
Lời giải:
Vẽ cung tròn tâm B bán kính 5cm cắt CD tại 2 điểm E và E'.
Nối BE, từ A kẻ đường thẳng song song với BE cắt CD tại F.
Nối BE', từ A kẻ đường thẳng song song với BE' cắt CD tại F'.
Ta có hình bình hành ABEF và hình bình hành ABE'F' có cạnh AB = 5cm, BE = 5cm, BE' = 5cm có diện tích bằng điện tích hình chữ nhật ABCD.
Có thể vẽ được hai hình như vậy.
Bài 35 trang 161 SBT Toán 8 Tập 1: Tính diện tích của hình thang vuông, biết hai đáy có độ dài là 2cm, 4cm, góc tạo bởi một cạnh bên và đáy lớn có số đo bằng 45o.
Lời giải:
Giả sử hình thang vuông ABCD có:
∠A = ∠D = 90o; ∠C = 45o
Kẻ BE ⊥ CD
Tam giác vuông BEC có ∠(BEC) = 90o cân tại E ⇒ BE = EC
Hình thang ABCD có hai cạnh bên AD // BE (vì cùng vuông góc với DC) ⇒ DE = AB = 2cm
EC = DC – DE = 4 – 2 = 2 (cm) ⇒ BE = 2cm ( vì tam giác BEC là tam giác vuông cân).
SABCD = 1/2 .BE(AB+ CD) = 1/2 .2.(2 + 4) = 6 (cm2)
Bài 36 trang 161 SBT Toán 8 Tập 1: Tính diện tích hình thang, biết các dây có độ dài là 7cm và 9cm, một trong các cạnh bên dài 8cm và tạo với đây một góc có số đo bằng 30°
Lời giải:
Giả sử hình thang ABCD có đáy AB = 7cm và CD = 9cm , cạnh bên BC = 8cm, ∠C = 30o
Kẻ BE ⊥ CD. Tam giác vuông GBE có ∠E = 90o, ∠C = 30o
Suy ra ∠(CBE) = 60o nên nó là một nửa tam giác đều có cạnh là CB.
⇒ BE = 1/2 CB = 4 (cm)
Vậy
Bài 37 trang 162 SBT Toán 8 Tập 1: Chứng minh rằng mọi đường thẳng đi qua trung điểm của đường trung bình của hình thang và cắt hai dây hình thang sẽ chia hình thang đó thành hai hình thang có diện tích bằng nhau.
Lời giải:
Giả sử hình thang ABCD có AB // CD, đường trung bình là MN. Gọi I là trung điểm của MN, đường thẳng bất kỳ đi qua I cắt AB tại P và CD tại Q.
Ta có hai hình thang APQD và BPQC có cùng đường cao.
MI là đường trung bình của hình thang APQD.
Suy ra: MI = 1/2 (AP + QD)
IN là đường trung bình của hình thang BPQC.
Suy ra: IN = 1/2 (BP + QC)
SAPQD = 1/2 (AP + QD).AH = MI.AH (1)
SBPQC = 1/2 (BP + QC).AH = IN.AH (2).
IM = IN (gt) (3)
Từ (1), (2) và (3) suy ra: SAPQD = SBPQC, các giá trị này không phụ thuộc vào vị trí của P và Q.
Bài 38 trang 162 SBT Toán 8 Tập 1: Diện tích hình bình hành bằng 24cm2. Khoảng cách từ giao điểm hai đường chéo đến các cạnh hình bình hành bằng 2cm và 3cm. Tính chu vi của hình bình hành.
Lời giải:
Gọi O là giao điểm hai đường chéo của hình bình hành ABCD, khoảng cách từ O đến cạnh AB là OH = 2cm , đến cạnh BC là OK = 3cm
* Kéo dài OH cắt cạnh CD tại H'.
Ta có OH ⊥ BC
⇒ OH' ⊥ CD và OH' = 2cm
Suy ra HH' bằng đường cao của hình bình hành.
SABCD = HH'.AB ⇒
* Kéo dài OK cắt AD tại K'.
Ta có: OK ⊥ BC ⇒ OK' ⊥ CD và OK' = 3 (cm)
Suy ra KK' là đường cao của hình bình hành.
SABCD = KK'.AB ⇒
Chu vi của hình bình hành ABCD là (6 + 4).2 = 20 (cm).
Bài 39 trang 162 SBT Toán 8 Tập 1: Một hình chữ nhật có các kích thước a và b. Một hình bình hành cũng có hai cạnh là a và b. Tính góc nhọn của hình bình hành nếu diện tích của nó bằng một nửa diện tích hình chữ nhật (a và b có cùng đơn vị đo).
Lời giải:
* Xét hình chữ nhật ABCD có chiều dài AB = a, chiều rộng AD = b.
Ta có: SABCD = ab.
* Hình bình hành MNPQ có góc M là góc tù, MN = a, cạnh MQ = b
Kẻ đường cao MH. Ta có: SMNPQ = MH.a
Theo bài ra, ta có: MH.a = 1/2 ab
Suy ra: MH = 1/2 b hay MH = MQ/2
Tam giác MHQ vuông tại H và MH = MQ/2
Cạnh đối diện góc nhọn bằng một nửa cạnh huyền nên ∠(MQH) = 30o
Vậy góc nhọn của hình bình hành bằng 30o.
Bài 40 trang 162 SBT Toán 8 Tập 1: Hai cạnh của một hình hình hành có độ dài là 6cm và 8cm. Một trong các đường cao có độ dài là 5cm. Tính độ dài đường cao thứ hai. Hỏi bài toán có mấy đáp số.
Lời giải:
Giả sử hình bình hành ABCD cói AB = 8cm, AD = 6cm.
ạ. Kẻ AH ⊥ CD, AK ⊥ BC.Ta có 5 < 6, 5 < 8
Đường cao là cạnh góc vuông nhỏ hơn cạnh huyền thỏa mãn có hai trường hợp:
*Trường hợp 1: AK = 5cm
Ta có: SABCD = AK.BC = 5.6 = 30 (cm2)
SABCD = AH.AD = 8.AH
Suy ra: 8.AH = 30 ⇒ AH = 30/8 = 15/4 (cm)
*Trường hợp 2: AH = 5cm
Ta có: SABCD = AH.CD= 5.8 = 40 (cm2)
SABCD = AK.BC = 6.AH
Suy ra: 6.AK = 40 ⇒ AK = 40/6 = 20/3 (cm)
Vậy đường cao thứ hai có độ dài là 15/4 cm hoặc 20/3 cm
Bài toán có hai đáp số.
Bài 41 trang 162 SBT Toán 8 Tập 1: Một hình chữ nhật và một hình bình hành có hai cạnh là a và b. Hỏi hình nào có diện tích lớn hơn (a vàb có cùng đơn vị do).
Lời giải:
Hình chữ nhật có hai cạnh là a và b nên Schữ nhật = ab
Hình bình hành có hai cạnh là a và b. Kẻ đường cao ứng với cạnh bằng ạ thì h < b (vì cạnh góc vuông nhỏ hơn cạnh huyền).
Nếu kẻ đường cao ứng với cạnh bằng b thì h < a (cạnh góc vuông nhỏ hơn cạnh huyền).
Diện tích của hình bình hành là: Shình bình hành = a.h = b.h'
Mà h < b và h' < a nên Sbình hành < Schữ nhật
Bài 4.1 trang 162 SBT Toán 8 Tập 1: Tính diện tích của hình được cho trong mỗi trường hợp sau:
a. Hình thang ABCD, đáy lớn AB = 10cm, đáy nhỏ CD = 6cm và đường cao DE = 5cm.
b. Hình thang cân ABCD, đáy nhỏ CD = 6cm, đường cao DH = 4cm và cạnh bên AD = 5cm.
Lời giải:
a. Áp dụng công thức tính diện tích hình thang.
S = (a+b)/2.h = (10+6)/2. 5 = 40(cm2)
b. Xét hình thang cân ABCD có AB // CD
Đáy nhỏ CD = 6cm, cạnh bên AD = 5cm
Đường cao DH = 4cm. Kẻ CK ⊥ AB
Ta có tứ giác CDHK là hình chữ nhật
HK = CD = 6cm
ΔAHD vuông tại H. Theo định lý Pi-ta-go ta có: AD 2= AH 2+ DH 2
⇒ AH 2= AD 2 - DH 2 = 52 - 42 = 25 – 16 = 9 ⇒ AH = 3cm
Xét hai tam giác vuông DHA và CKB :
∠(DHA)= ∠(CKB)= 90o
AD = BC (tính chất hình thang cân)
∠A = ∠B(gt)
Do đó: ΔDHA = ΔCKB (cạnh huyền, góc nhọn)
⇒ KB = AH = 3 (cm)
AB = AH + HK + KB = 3 + 6 + 3 = 12 (cm)
SABCD = (AB + CD) / 2. DH = (12 + 6) / 2. 4 = 36( cm 2)
Bài 4.2 trang 162 SBT Toán 8 Tập 1: Cho hình thang ABCD có đáy nhỏ CD và đáy lớn AB
a. Hãy vé tam giác ADE mà diện tích của nó bằng diện tích hình thang đã cho. Từ đó suy ra cách tính diện tích hình thang dựa vào độ dài hai cạnh đáy và độ dài đường cao của hình thang.
b. Hãy chia hình thang đã cho thành hai phần có diện tích bằng nhau bằng một đường thẳng đi qua đỉnh D của nó.
Lời giải:
a. Gọi F là trung điểm của cạnh bên BC. Cắt hình thang theo đường DF đưa ghép về như hình vẽ bên, điểm C trung với điểm B, D trùng với E.
Vì AB // CD ⇒ ∠(ABC) = 180o⇒ A, B, E thẳng hàng
∠(ABF) + ∠(DFC) = 180o
⇒ D, F, E thẳng hàng
ΔDFC = ΔEFB (g.c.g)
SDFC = SEFB
Suy ra: SABCD = SADE
ΔDFC = ΔEFB⇒ DC = BE
AE = AB + BE = AB + DC
SADE = 1/2 DH. AE = 1/2 DH. (AB + CD)
Vậy : SABCD = 1/2 DH. (AB + CD)
b. Dựa trên hình vẽ câu a ta chọn điểm K là trung điểm AE.
Ta nối DK cắt hình thang theo đường DK ta có hai phần diện tích bằng nhau:
Một phần là ΔADK có AK = (AB + CD) / 2
Một phần là hình thang BCDK có hai đáy CD + BK = (AB + CD) / 2
Và có chiều cao bằng nhau nên có diện tích bằng nhau.
Bài 4.3 trang 162 SBT Toán 8 Tập 1: Cho hình bình hành ABCD có diện tích S. Trên cạnh BC lấy hai điểm M, N sao cho BM = MN = NC = 1/3 BC
a. Tính diện tích của tứ giác ABMD theo S
b. Từ điểm N kẻ NT song song với AB (T thuộc AC). Tính diện tích của tứ giác ABNT theo S
Lời giải:
a. ΔDMC có CM = 2/3BC
Hình bình hành ABCD và ΔDMC có chung đường cao kẻ từ đỉnh D đến BC.
Gọi độ dài đường cao là h, BC = a
Ta có diện tích hình bình hành ABCD là S = a h
SDMC = 1/2 h. 2/3 a = 1/3 ah = 1/3 S
SABMD = SABCD - SDMC = s - 1/3 S = 2/3 S
b. SABC = 1/3 SABCD = S/2
CN = 1/3 BC , NT // AB.
Theo tính chất đường thẳng song song cách đều ⇒ CT = 1/3 AC
ΔABC và ΔBTC có chung chiều cao kẻ từ đỉnh B, đáy CT = 1/3 AC
⇒ SBTC = 1/3 SABC = 1/3 . S/2 = S/6
ΔBTC và ΔTNC có chung chiều cao kẻ từ đỉnh T, cạnh đáy CN = 1/3 CB
⇒ STNC = 1/3 SBTC = 1/3 . S/6 = S/18
SABNT = SABC - STNC = S/2 - S/18 = 9S/18 - S/18 = 4S/9
Xem thêm các bài giải sách bài tập Toán lớp 8 chọn lọc, chi tiết khác:
- Bài 5: Diện tích hình thoi
- Bài 6: Diện tích đa giác
- Ôn tập chương 2 - Phần Hình học
- Bài 1: Mở đầu về phương trình
Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Lớp 8 - Kết nối tri thức
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) KNTT
- Giải sgk Toán 8 - KNTT
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT
- Lớp 8 - Chân trời sáng tạo
- Soạn văn 8 (hay nhất) - CTST
- Soạn văn 8 (ngắn nhất) - CTST
- Giải sgk Toán 8 - CTST
- Giải sgk Khoa học tự nhiên 8 - CTST
- Giải sgk Lịch Sử 8 - CTST
- Giải sgk Địa Lí 8 - CTST
- Giải sgk Giáo dục công dân 8 - CTST
- Giải sgk Tin học 8 - CTST
- Giải sgk Công nghệ 8 - CTST
- Giải sgk Hoạt động trải nghiệm 8 - CTST
- Giải sgk Âm nhạc 8 - CTST
- Lớp 8 - Cánh diều
- Soạn văn 8 Cánh diều (hay nhất)
- Soạn văn 8 Cánh diều (ngắn nhất)
- Giải sgk Toán 8 - Cánh diều
- Giải sgk Khoa học tự nhiên 8 - Cánh diều
- Giải sgk Lịch Sử 8 - Cánh diều
- Giải sgk Địa Lí 8 - Cánh diều
- Giải sgk Giáo dục công dân 8 - Cánh diều
- Giải sgk Tin học 8 - Cánh diều
- Giải sgk Công nghệ 8 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 8 - Cánh diều
- Giải sgk Âm nhạc 8 - Cánh diều