Bài 25 trang 8 SBT Toán 8 Tập 1



Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

Bài 25 trang 8 SBT Toán 8 Tập 1: Chứng minh rằng: n2 (n + 1) + 2n(n + 1) luôn chia hết cho 6 với mọi số nguyên n.

Lời giải:

Ta có n2 (n + 1) + 2n(n + 1) = (n2 + 2n).(n+ 1)= n(n+ 2).(n+1) = n(n + 1)(n + 2)

Vì n và n + 1 là 2 số nguyên liên tiếp nên có một số chia hết cho 2

⇒ n(n + 1) ⋮ 2

n, n + 1, n + 2 là 3 số nguyên liên tiếp nên có một số chia hết cho 3

⇒ n(n + 1)(n + 2) ⋮ 3 mà ƯCLN (2;3) = 1

vậy n(n + 1)(n + 2) ⋮ (2.3) = 6 với mọi số nguyên n

Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8) khác:

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:


bai-6-phan-tich-da-thuc-thanh-nhan-tu-bang-phuong-phap-dat-nhan-tu-chung.jsp


Giải bài tập lớp 8 sách mới các môn học