Bài 1.77 trang 40 Sách bài tập Giải tích 12



Bài 1.77 trang 40 Sách bài tập Giải tích 12: Cho hàm số

Giải sách bài tập Toán 12 | Giải SBT Toán 12

a) Xác định a để hàm số luôn đồng biến.

b) Xác định a để đồ thị của hàm số cắt trục hoành tại ba điểm phân biệt.

c) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với a = 3/2.

Từ đó suy ra đồ thị của hàm số

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Lời giải:

a) Ta có

Giải sách bài tập Toán 12 | Giải SBT Toán 12

y' = (a - 1)x2 + 2ax + 3a - 2.

Với a = 1, y' = 2x + 1 đổi dấu khi x đi qua -1/2. Hàm số không đồng biến.

Với a ≠ 1 thì với mọi x mà tại đó y' ≥ 0

Giải sách bài tập Toán 12 | Giải SBT Toán 12

(y' = 0 chỉ tại x = -2, khi a = 2).

Vậy với a ≥ 2 hàm số luôn đồng biến

b) Đồ thị cắt trục hoành tại ba điểm phân biệt khi và chỉ khi phương trình y = 0 có ba nghiệm phân biệt. Ta có

Giải sách bài tập Toán 12 | Giải SBT Toán 12

y = 0 có ba nghiệm phân biệt khi và chỉ khi phương trình

(a - 1)x2 + 3ax + 9a - 6 = 0

Có hai nghiệm phân biệt khác 0. Muốn vậy, ta phải có

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Giải hệ trên, ta được:

Giải sách bài tập Toán 12 | Giải SBT Toán 12Giải sách bài tập Toán 12 | Giải SBT Toán 12

c) Khi a = 3/2 thì

Giải sách bài tập Toán 12 | Giải SBT Toán 12Giải sách bài tập Toán 12 | Giải SBT Toán 12

y' = 0 ⇔ x2 + 6x + 5 = 0 ⇔ x = -1 hoặc x = -5.

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Đồ thị như trên Hình 1.18

Giải sách bài tập Toán 12 | Giải SBT Toán 12Giải sách bài tập Toán 12 | Giải SBT Toán 12

nên từ đồ thị (C) ta suy ngay ra đồ thị của hàm số

Giải sách bài tập Toán 12 | Giải SBT Toán 12

như trên Hình 1.19

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Các bài giải sách bài tập Giải tích 12 khác:


bai-tap-on-tap-chuong-1.jsp


Giải bài tập lớp 12 sách mới các môn học