Bài 3.62 trang 134 Sách bài tập Hình học 12



Bài 3.62 trang 134 Sách bài tập Hình học 12: Cho hình lập phương ABCD.A1B1C1D1 có cạnh bằng 1. Gọi M, N, P lần lượt là trung điểm của các cạnh BB1, CD. A1D1. Tính khoảng cách và góc giữa hai đường thẳng MP và C1N.

Lời giải:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Ta chọn hệ trục tọa độ như sau: B1 là gốc tọa độ, B1A1 = i, B1C1 = j, B1B = k. Trong hệ trục vừa chọn, ta có B1(0; 0; 0), B(0; 0; 1), A1(1; 0; 0), D1(1; 1; 0), C(0; 1; 1), D(1; 1; 1), C1(0; 1; 0).

Suy ra M(0; 0; 1/2), P(1; 1/2; 0), N(1/2; 1; 1)

Ta có MP = (1; 1/2; −1/2); C1N = (1/2; 0; 1)

Gọi (α) là mặt phẳng chứa C1N và song song với MP. (α) có vecto pháp tuyến là n = (1/2; −5/4; −14) hay n' = (2; −5; −1)

Phương trình của (α) là 2x – 5(y – 1) – z = 0 hay 2x – 5y – z + 5 = 0

Ta có:

d(MP, C1N) = d(M,(α)) Giải sách bài tập Toán 12 | Giải SBT Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Vậy ∠(MP,C1N) = 90o.

Các bài giải sách bài tập Hình học 12 khác:


cau-hoi-va-bai-tap-chuong-3.jsp


Giải bài tập lớp 12 sách mới các môn học