Bài 1.22 trang 16 Sách bài tập Giải tích 12



Bài 1.22 trang 16 Sách bài tập Giải tích 12: Xác định giá trị của tham số m để hàm số y = x3 – 2x2 + mx + 1 đạt cực tiểu tại x = 1. (Đề thi tốt nghiệp THPT năm 2011)

Lời giải:

TXĐ: D = R

y’ = 3x2 – 4x + m; y’ = 0 ⇔ 3x2 – 4x + m = 0

Phương trình trên có hai nghiệm phân biệt khi:

∆’ = 4 – 3m > 0 ⇔ m < 4/3 (∗)

Hàm số có cực trị tại x = 1 thì :

y’(1) = 3 – 4 + m = 0 ⇒ m = 1 (thỏa mãn điều kiện (∗) )

Mặt khác, vì:

y’’ = 6x – 4 ⇒ y’’(1) = 6 – 4 = 2 > 0

cho nên tại x = 1, hàm số đạt cực tiểu.

Vậy với m = 1, hàm số đã cho đạt cực tiểu tại x = 1

Các bài giải sách bài tập Giải tích 12 khác:


bai-2-cuc-tri-cua-ham-so.jsp


Giải bài tập lớp 12 sách mới các môn học