Giải sgk, sbt Toán 12 trang 15 (sách mới)



Lời giải sgk, sbt Toán 12 trang 15 sách mới Kết nối tri thức, Cánh diều, Chân trời sáng tạo. Mời các bạn đón đọc:

- Toán lớp 12 trang 15 Tập 1 (sách mới):

- Toán lớp 12 trang 15 Tập 2 (sách mới):




Lưu trữ: Giải Toán 12 trang 15 Tập 2 (sách cũ)

Bài 1.17 trang 15 Sách bài tập Giải tích 12: Tìm cực trị của các hàm số sau:

a) y = −2x2 + 7x − 5

b) y = x3 − 3x2 − 24x + 7

c) y = (x + 2)2.(x − 3)3

Lời giải:

a) y = −2x2 + 7x − 5. TXĐ: R

y′ = −4x + 7, y′ = 0 ⇔ x = 7/4

y′′ = −4 ⇒ y′′(7/4) = −4 < 0

Vậy x = 7/4 là điểm cực đại của hàm số và yCD = 9/8

b) y = x3 − 3x2 − 24x + 7. TXĐ: R

y′ = 3x2 − 6x – 24 = 3(x2 − 2x − 8)

y′ = 0 ⇔ Giải sách bài tập Toán 12 | Giải SBT Toán 12

Vì y′′(−2) = −18 < 0, y′′(4) = 18 > 0 nên hàm số đạt cực đại tại x = -2; đạt cực tiểu tại x = 4 và y = y(-2) = 35; yCT = y(4) = -73.

e) TXĐ: R

y′ = 2(x + 2).(x − 3)3 + 3(x + 2)2.(x − 3)2 = 5x(x + 2).(x − 3)2

y′= 0 ⇔ Giải sách bài tập Toán 12 | Giải SBT Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải SBT Toán 12

Từ đó suy ra y = y(-2) = 0; yCT = y(0) = -108.

Các bài giải sách bài tập Giải tích 12 khác:


bai-2-cuc-tri-cua-ham-so.jsp


Giải bài tập lớp 12 sách mới các môn học