Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O



Bài 55 trang 96 SGK Toán 8 Tập 1: Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt các cạnh AB và CD theo thứ tự ở M và N. Chứng minh rằng điểm M đối xứng với điểm N qua O.

Lời giải:

Giải bài 55 trang 96 Toán 8 Tập 1 | Giải bài tập Toán 8

+ ABCD là hình bình hành có O là giao điểm hai đường chéo

⇒ OB = OD.

+ ABCD là hình bình hành ⇒ AB // CD ⇒ Giải bài 55 trang 96 Toán 8 Tập 1 | Giải bài tập Toán 8 (Hai góc SLT).

Hai tam giác BOM và DON có:

Giải bài 55 trang 96 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ ΔBOM = ΔDON (g.c.g)

⇒ OM = ON

⇒ O là trung điểm của MN

⇒ M đối xứng với N qua O.

Kiến thức áp dụng

+ Hai điểm được gọi là đối xứng nhau qua điểm O nếu O là trung điểm của đoạn thẳng nối hai điểm đó.

+ Hình bình hành có hai cạnh đối song song và hai đường chéo cắt nhau tại trung điểm của mỗi đường.

Các bài giải bài tập Giải bài tập Toán lớp 8 Bài 8 khác


bai-8-doi-xung-tam.jsp


Giải bài tập lớp 8 sách mới các môn học