Toán 7 Ôn tập chương 2 (Câu hỏi - Bài tập)

Câu hỏi ôn tập chương 2 Hình Học trang 139 sgk Toán lớp 7 Tập 1 : 1. Phát biểu định lí về tổng ba góc của một tam giác, tính chất góc ngoài của tam giác.

Lời giải

- Tổng ba góc của một tam giác bằng 180 o

- Mỗi góc ngoài của một tam giác bằng tổng của hai góc trong không kề với nó.

Câu hỏi ôn tập chương 2 Hình Học trang 139 sgk Toán lớp 7 Tập 1 : 2. Phát biểu ba trường hợp bằng nhau của hai tam giác.

Lời giải

- Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.

- Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.

- Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.

Câu hỏi ôn tập chương 2 Hình Học trang 139 sgk Toán lớp 7 Tập 1 : 3. Phát biểu các trường hợp bằng nhau của hai tam giác vuông.

Lời giải

- Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

- Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

- Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

Câu hỏi ôn tập chương 2 Hình Học trang 139 sgk Toán lớp 7 Tập 1 : 4. Phát biểu định nghĩa tam giác cân, tính chất về góc của tam giác cân. Nêu các cách chứng minh một tam giác là tam giác cân.

Lời giải

- Tam giác cân là tam giác có hai cạnh bằng nhau.

- Tính chất: Trong một tam giác cân, hai góc ở đáy bằng nhau

- Các cách chứng minh một tam giác là tam giác cân:

   • Nếu một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân.

   • Nếu một tam giác có hai cạnh bằng nhau thì tam giác đó là tam giác cân.

Câu hỏi ôn tập chương 2 Hình Học trang 139 sgk Toán lớp 7 Tập 1 : 5. Phát biểu định nghĩa tam giác đều, tính chất về góc của tam giác đều. Nêu các cách chứng minh một tam giác là tam giác đều.

Lời giải

- Tam giác đều là tam giác có ba cạnh bằng nhau.

- Tính chất: Trong một tam giác đều, mỗi góc bằng 60 o

- Các cách chứng minh một tam giác là tam giác đều:

   • Nếu một tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều.

   • Nếu một tam giác cân có một góc bằng 60 o thì tam giác đó là tam giác đều.

Câu hỏi ôn tập chương 2 Hình Học trang 139 sgk Toán lớp 7 Tập 1 : 6. Phát biểu định lí Py – ta – go (thuận và đảo).

Lời giải

- Định lí Py – ta – go thuận:

Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.

- Định lí Py – ta – go đảo:

Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông.

Bài 67 trang 140 sgk Toán lớp 7 Tập 1:

Câu Đúng Sai
1. Trong một tam giác, góc nhỏ nhất là góc nhọn
2. Trong một tam giác có ít nhất là hai góc nhọn
3. Trong một tam giác góc lớn nhất là góc tù
4. Trong một tam giác vuông , hai góc nhọn bù nhau
5. Nếu góc A là góc ở đáy của một tam giác cân thì góc A < 90 o
6. Nếu góc A là góc ở đỉnh của một tam giác cân thì góc A < 90 o

Lời giải:

1. Đúng

2. Đúng

3. Sai. Tam giác nhọn có 3 góc đều nhọn.

4. Sai. Hai góc nhọn phụ nhau.

5. Đúng.

6. Sai. Ví dụ tam giác ABC có 3 góc lần lượt là 120º, 30º, 30º là tam giác cân có góc ở đỉnh bằng 120º.

Bài 68 trang 141 sgk Toán lớp 7 Tập 1: Các tính chất, sau đây được suy ra trực tiếp từ định lí nào ?

a) Góc ngoài của một tam giác bằng tổng hai góc trong không kề với nó.

b) Trong một tam giác vuông hai góc nhọn phụ nhau.

c) Trong một tam giác đều, các góc bằng nhau.

d) Nếu một tam giác có ba góc bằng nhau thì tam giác đo là tam giác đều.

Lời giải:

- Các tính chất ở các câu a, b được suy ra từ định lí "Tổng ba góc của một tam giác bằng 180 o ".

* Chứng minh:

a) ?4 bài 1 – trang 107.

b) Tam giác ABC vuông tại A

Giải bài tập Toán lớp 7

- Tính chất ở câu c được suy ra từ định lí "Trong một tam giác cân hai góc ở đáy bằng nhau".

* Chứng minh:

Giả sử có tam giác ABC đều ⇒ AB = AC =BC ⇒ ΔABC cân tại A và cân tại B

Giải bài tập Toán lớp 7

- Tính chất ở câu d được suy ra từ định lí: "Nếu một tam giác có hai góc bằng nhau thì tam giác đo là tam giác cân".

* Chứng minh:

Giải bài tập Toán lớp 7

⇒ AB = AC = BC ⇒ ΔABC là tam giác đều.

Bài 69 trang 141 sgk Toán lớp 7 Tập 1: Cho điểm A nằm ngoài đường thẳng a. Vẽ cung tròn tâm A cắt đường thẳng a ở B và C. Vẽ các cung tròn tâm B và tâm C có cùng bán kính sao cho chúng cắt nhau tại một điểm khác A, gọi điểm đó là D. Hãy giải thích vì sao AD vuông góc với đường thẳng a.

Lời giải:

Giải bài 69 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7 Giải bài 69 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Gọi bán kính cung tròn tâm A là r, bán kính cung tròn tâm B và C là r’.

Xét ΔABD và ΔACD có:

    AB = AC (=r)

    DB = DC (=r')

    AD cạnh chung

Nên ΔABD = ΔACD (c.c.c)

Giải bài 69 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

- Gọi H là giao điểm của AD và a

ΔAHB và ΔAHC có

    AB = AC (= r)

    Giải bài 69 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

    AH cạnh chung

⇒ ΔAHB = ΔAHC (c.g.c)

Giải bài 69 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Bài 70 trang 141 sgk Toán lớp 7 Tập 1: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M trên tia đối của tia CB lấy điểm N sao cho BM = CN.

a) Chứng minh rằng tam giác AMN là tam giác cân

b) Kẻ BH ⊥ AM, kẻ CK ⊥ AN. Chứng minh rằng BH = CK

c) Chứng minh rằng AH = AK

d) Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì ? Vì sao

e) Khi góc BAC = 60 o và BM = CN = BC hãy tính số đo các góc của tam giác AMN và xác định dạng của tam giác OBC

Lời giải:

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7 Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

a) ΔABC cân tại A suy ra Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Ta lại có :

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

- ΔABM và ΔACN có

      AB = AC (Do ΔABC cân tại A).

      Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

      BM = CN(gt)

⇒ ΔABM = ΔACN (c.g.c)

⇒ AM = AN (hai cạnh tương ứng) ⇒ ΔAMN cân tại A.

b) Xét ΔBHM vuông tại H và ΔCKN vuông tại K có:

      BM = CN (gt)

      Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

⇒ ΔBHM = ΔCKN (cạnh huyền – góc nhọn)

⇒ BH = CK (hai cạnh tương ứng)

c) Theo câu b ta có ΔBHM = ΔCKN ⇒ HM = KN (hai cạnh tương ứng)

Mà AM = AN ⇒ AM –MH = AK – KN hay AH = AK.

d) ΔBHM = ΔCKN

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Vậy tam giác OBC là tam giác cân tại O.

e) Khi góc BAC = 60º và BM = CN = BC

Tam giác cân ABC có góc BAC = 60º nên là tam giác đều

⇒ AB = BC và góc B1 = 60º

Ta có: AB = CB, BC = BM (gt) ⇒ AB = BM ⇒ ΔABM cân ở B ⇒ Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Mà theo tính chất góc ngoài trong ΔBAM thì

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Tương tự ta có

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

* Ta chứng minh tam giác OBC là tam giác đều.

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Bài 71 trang 141 sgk Toán lớp 7 Tập 1: Tam giác ABC trên giấy kẻ ô vuông là tam giác gì.

Giải bài 71 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Lời giải:

Vẽ lại hình:

Giải bài 71 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Áp dụng định lý Pytago :

- Trong tam giác ABH có : AB 2 = AH 2 + HB 2 = 2 2 + 3 2 = 13.

- Trong tam giác AKC có : AC 2 = AK 2 + KC 2 =2 2 + 3 2 = 13.

- Trong tam giác BCI có: BC 2 = BI 2 + IC 2 = 1 2 + 5 2 =26.

Nhận thấy AB 2 = AC 2 ⟹ AB = AC nên ∆ABC cân tại A (1)

Áp dụng định lý Pytago đảo ta thấy AB 2 + AC 2 = BC 2 nên ∆ABC vuông tại A (2)

Từ (1) và (2) suy ra ∆ABC vuông cân tại A.

Bài 72 trang 141 sgk Toán lớp 7 Tập 1: Đố vui: Dũng đố Cường dùng 12 que diêm bằng nhau để sắp xếp thành.

a) Một tam giác đều.

b) Một tam giác cân mà không đều.

c) Một tam giác vuông.

Em hãy giúp Cường trong trường hợp trên.

Lời giải:

a) Xếp tam giác đều: Xếp tam giác với mỗi cạnh là bốn que diêm.

b) Một tam giác cân mà không đều: 2 cạnh bên 5 que diêm, cạnh đáy 2 que.

c) Xếp tam giác vuông: Xếp tam giác có các cạnh lần lượt là ba, bốn và năm que diêm. (Cạnh huyền 5 que diêm, 2 cạnh bên lần lượt là 3, 4 que diêm vì 5 2 = 3 2 + 4 2 ).

Bài 73 trang 141 sgk Toán lớp 7 Tập 1: Đố. Trên hình 152, một cầu trượt có đường lên BA dài 5m, độ cao AH = 3m, độ dài BC = 10m, CD = 2m. Bạn Mai nói rằng đường trượt tổng cộng ACD gập hơn hai lần đường lên BA. Bạn Vân nói rằng điều đó không đúng ? Ai đúng ai sai.

Giải bài 73 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Lời giải:

Giải bài 73 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

+ ΔAHB vuông tại H

Theo định lí Py–ta- go ta có

HB 2 = AB 2 – AH 2 = 5 2 – 3 2 =25 - 9 =16

Suy ra HB = 4 (m)

Suy ra HC = BC – HB = 10 - 4 = 6(m)

+ ΔAHC vuông tại H

Theo định lí Py-ta-go ta có

AC 2 = AH 2 + HC 2 = 3 2 + 6 2 = 9 + 36 = 45.

Suy ra AC = √45 ≈ 6,7(m)

Độ dài đường trượt ACD bằng: 6,7 + 2= 8,7 (m)

Và hai lần đường lên BA bằng 5.2 =10 (m)

Đo độ dài đường trượt ACD chưa bằng hai lần đườg lên BA

Vậy bạn Mai nói sai, bạn Vân nói đúng.

Xem thêm Video Giải bài tập Toán lớp 7 hay và chi tiết khác:

Lời giải bài tập lớp 7 sách mới:


Giải bài tập lớp 7 sách mới các môn học