Giải bài tập Toán lớp 7 Luyện tập trang 137

Bài 65 trang 137 sgk Toán lớp 7 Tập 1: Cho ΔABC cân ở A (∠A < 90 o ). Vẽ BH ⊥ AC (H ∈ AC), CK ⊥ AB (K ∈ AB).

a) Chứng minh rằng AH = HK

b) Gọi I là giao điểm của BH và CK. Chứng minh rằng AI là tia phân giác của góc A

Lời giải:

Giải bài 65 trang 137 Toán 7 Tập 1 | Giải bài tập Toán 7 Giải bài 65 trang 137 Toán 7 Tập 1 | Giải bài tập Toán 7

a) Xét ΔABH vuông tại H và ΔACK vuông tại K có:

      AB = AC (Do ΔABC cân tại A)

      góc A chung

Nên ΔABH = ΔACK (cạnh huyền – góc nhọn) ⇒ AH = AK (hai cạnh tương ứng).

b) Xét ΔAIK vuông tại K và ΔAIH vuông tại H có:

      AH = AK (theo phần a)

      AI chung

⇒ ΔAIK = ΔAIH (cạnh huyền – cạnh góc vuông).

⇒ góc IAK = góc IAH (hai góc tương ứng)

Vậy AI là tia phân giác của góc A.

Bài 66 trang 137 sgk Toán lớp 7 Tập 1: Tìm các tam giác bằng nhau trên hình 148.

Giải bài 66 trang 137 Toán 7 Tập 1 | Giải bài tập Toán 7

Lời giải:

+ Hai tam giác vuông AMD và AME Giải bài 66 trang 137 Toán 7 Tập 1 | Giải bài tập Toán 7 có:

      AM chung

      Giải bài 66 trang 137 Toán 7 Tập 1 | Giải bài tập Toán 7

⇒ ΔAMD = ΔAME ( cạnh huyền - góc nhọn)

⇒ MD = ME và AD = AE ( Hai cạnh tương ứng) (1)

+ Hai tam giác vuông MDB và MEC Giải bài 66 trang 137 Toán 7 Tập 1 | Giải bài tập Toán 7

      MB = MC (GT)

      MD = ME (chứng minh trên)

⇒ ΔMDB = ΔMEC ( cạnh huyền – cạnh góc vuông)

⇒ BD=CE ( hai cạnh tương ứng) (2)

Từ (1) và (2) ⇒ AD+BD=AE+CE ⇒ AB=AC.

+ Xét ΔAMB và ΔAMC có:

      MB = MC (GT)

      AB = AC (chứng minh trên)

      AM chung

⇒ ΔAMB = ΔAMC (c.c.c)

Xem thêm Video Giải bài tập Toán lớp 7 hay và chi tiết khác:

Lời giải bài tập lớp 7 sách mới:


Giải bài tập lớp 7 sách mới các môn học