Top 6 Đề kiểm tra Toán 8 Chương 2 Hình học có đáp án, cực hay



Để học tốt Toán lớp 8, phần dưới đây liệt kê Top 6 Đề kiểm tra Toán 8 Chương 2 Hình học có đáp án, cực hay. Hi vọng bộ đề thi này sẽ giúp bạn ôn luyện & đạt điểm cao trong các bài thi Toán 8.

Thời gian làm bài: 15 phút

Cho hình chữ nhật ABCD có AB = 6cm, AC = 10cm. Gọi O là giao điểm hai đường chéo AC và BD và M, N, P, Q lần lượt là trung điểm của OA, OB, OC, OD.

a) Tính SMNPQ.

b) Chứng minh rằng: SAMNB = SCPQD .

Đáp án và Hướng dẫn giải

Bộ Đề thi Toán 8

a) Ta có MN và PQ lần lượt là các đường trung bình của các tam giác AOB và COD mà AB // CD và AB = CD nên MN // PQ và MN = PQ

⇒ Tứ giác MNPQ là hình bình hành.

Tương tự NP // BC mà AB ⊥ BC nên MN ⊥ NP. Do đó MNPQ là hình chữ nhật.

Trong ΔABC ta có

Bộ Đề thi Toán 8

Vậy SMNPQ = MN.PQ = 3.4 = 12 (cm2).

b)Dễ thấy ΔAOB = ΔCOD (c.c.c).

Tương tự ΔMON = ΔPOQ

Do đó: SAOB = SCOD và SMON = SPOQ.

⇒ SAOB - SMON = SCOD - SPOQ hay SAMNB = SCPQD.

Thời gian làm bài: 45 phút

Phần trắc nghiệm (3 điểm)

Câu 1: Điền vào chỗ trống (…) để được khẳng định đúng.

Đa giác có tất cả các cạnh bằng nhau và tất cả các góc là ………

Câu 2: Cho đa giác có 5 cạnh. Số đường chéo của đa giác này là:

A. 3     B. 4     C. 5     D. 6

Câu 3: Cho đa giác có số đường chéo là 9. Đa giác đó có số cạnh là:

A. 5     B. 6     C. 7     D. 8

Câu 4: Khi chiều dài hình chữ nhật tăng lên 3 lần và chiều rộng không dổi thì diện tích hình chữ nhật về sau sẽ:

A. Tăng lên 3 lần

B. Tăng lên 6 lần

C. Tăng lên 9 lần

D. Giảm đi 3 lần

Câu 5: Cho hình vuông ABCD có cạnh 12cm (hình bên), AE = xcm, Bộ Đề thi Toán 8 . Độ dài của x là:

Bộ Đề thi Toán 8

A. 5cm    B. 6cm     C. 7cm    D. 8cm

Câu 6: Biết độ dài hai đường chéo của hình thoi là 4cm và 7cm. Diện tích hình thoi là:

A. 28cm2     B. 14cm2     C. 7cm2     D. 56cm2

Phần tự luận (7 điểm)

Bài 1: (3 điểm)

a) Tính tổng các góc trong của đa giác 5 cạnh.

b) Cho ngũ giác đều ABCDE. Gọi F là giao điểm hai đường chéo AC và BE. Chứng minh tứ giác CFED là hình thoi.

Bài 2: (4 điểm) Cho hình bình hành ABCD có diện tích S. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Đường thẳng BQ cắt AP tại E và cắt MC tại F. Đường thẳng DN cắt AP tại S và cắt MC tại R.

a) Chứng minh tứ giác EFRS là hình bình hành.

b) Tính diện tích hình bình hành EFRS theo S.

Đáp án và Hướng dẫn giải

Phần trắc nghiệm (3 điểm)

Câu 1: Đa giác đều Câu 2: C Câu 3: B
Câu 4: A Câu 5: D Câu 6: B

Phần tự luận (7 điểm)

Bài 1: (3 điểm)

Bộ Đề thi Toán 8

a) Nối AC; AD

Ngũ giác ABCDE được chia thành 3 tam giác: ΔABC, ΔACD, ΔADE. Tổng các góc trong của mỗi tam giác bằng 180o.

Tổng các góc trong của ngũ giác ABCDE là 180o.3 = 540o

b) Vì ABCDE là ngũ giác đều nên

Bộ Đề thi Toán 8

Mặt khác, ΔABC cân tại B nên:

Bộ Đề thi Toán 8

Suy ra ED // AC hay ED // CF.

Chứng minh tương tự ta có EF // CD

Mặt khác ED = DC (gt) nên tứ giác CEFD là hình thoi.

Bài 2: (4 điểm)

Bộ Đề thi Toán 8

a) Ta có AB // CD (gt)

Suy ra AM // CP    (1)

Lại có AM = AB/2; CP = CD/2    (2)

Từ (1) và (2) suy ra AMCP là hình bình hành

Suy ra AP // CM hay ES // FR.

Tương tự ta cũng chứng minh được tứ giác BQDN là hình bình hành nên BQ // DN. Suy ra EF // RS.

Vậy tứ giác EFRS là hình bình hành

b) Đặt PS = x. Suy ra CR = 2x (tính chất đường trung bình)

Từ đó suy ra RF = ES = AE = 2x

Suy ra: ES = 2AP/5 => SEFRS = 2SAMCP/5

Vì SAMCP = SABCD/2 nên SEFRS = SABCD/2

Xem thêm các đề kiểm tra, Đề thi Toán 8 chọn lọc, có đáp án hay khác:




Giải bài tập lớp 8 sách mới các môn học