Luyện tập 2 trang 38 Chuyên đề Toán 12 Kết nối tri thức

Luyện tập 2 trang 38 Chuyên đề Toán 12: (Định luật khúc xạ ánh sáng)

Gọi vkk là vận tốc ánh sáng trong không khí và vn là vận tốc ánh sáng trong nước. Theo nguyên lí Fermat, một tia sáng di chuyển từ một điểm A trong không khí đến một điểm B trong nước theo đường gấp khúc APB sao cho tổng thời gian di chuyển là nhỏ nhất (H.2.13). Vận dụng đạo hàm tìm cực trị của hàm số T(x) (tổng thời gian tia sáng đi từ A đến B theo đường gấp khúc APB) để chứng tỏ rằng khi T(x) nhỏ nhất thì góc tới i và góc khúc xạ r thoả mãn phương trình sinisinr=vkkvn.

Phương trình này được gọi là Định luật Snell.

Luyện tập 2 trang 38 Chuyên đề Toán 12 Kết nối tri thức

Lời giải:

Từ hình vẽ, với 0 ≤ x ≤ c ta có: AP=a2+x2  và PB=b2+cx2.

Thời gian ánh sáng di chuyển từ A đến P là: t1=APvkk=a2+x2vkk.

Thời gian ánh sáng di chuyển từ P đến B là: t2=PBvn=b2+cx2vn.

Khi đó, tổng thời gian tia sáng đi từ A đến B theo đường gấp khúc APB là:

Tx=t1+t2=a2+x2vkk+b2+cx2vn.

Xét hàm số Tx=a2+x2vkk+b2+cx2vn  trên đoạn [0; c].

Đạo hàm của hàm T(x) là: T'x=xvkka2+x2cxvnb2+cx2.

Ta có T'x=0xvkka2+x2cxvnb2+cx2=0

1vkkxa2+x2=1vncxb2+cx2

1vkksini=1vnsinrsinisinr=vkkvn.

Giả sử x = x0 thỏa mãn sinisinr=vkkvn.

Vận dụng phương pháp tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một đoạn, ta có:

T0=avkk+b2+c2vn;  Tx0=a2+x02vkk+b2+cx02vn;  Tc=a2+c2vkk+bvn.

Ta có T(x0) là giá trị nhỏ nhất trong các giá trị T(0), T(x0), T(c).

Vậy T(x) nhỏ nhất khi góc tới i và góc khúc xạ r thỏa mãn phương trình sinisinr=vkkvn.

Lời giải bài tập Chuyên đề Toán 12 Bài 4: Vận dụng đạo hàm để giải quyết một số bài toán tối ưu hay, chi tiết khác:

Xem thêm lời giải bài tập Chuyên đề học tập Toán 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 sách mới các môn học