Bài 2.9 trang 43 Chuyên đề Toán 12 Kết nối tri thức

Bài 2.9 trang 43 Chuyên đề Toán 12: Một công ty dự kiến chi 1 tỉ đồng sản xuất các thùng đựng sơn hình trụ với dung tích 5 ℓ. Giá sản xuất mặt xung quanh là 100 nghìn đồng m2, giá sản xuất mặt đáy là 120 nghìn đồng/m2. Hỏi công ty có thể sản xuất được tối đa bao nhiêu thùng sơn? (Giả sử chi phí cho các mối nối không đáng kể)

Lời giải:

Đổi 5 ℓ = 5 dm3 = 0,005 m3.

Gọi x (m) là bán kính của đáy thùng đựng sơn hình trụ, x > 0.

Khi đó, chiều cao của thùng đựng sơn hình trụ là: 0,005πx2 (m).

Diện tích xung quanh của thùng đựng sơn hình trụ là: Sxq=2πx0,005πx2=0,01x (m2).

Diện tích đáy của thùng đựng sơn hình trụ là: Sđáy = πx2 (m2).

Giá sản xuất mặt xung quanh của một thùng đựng sơn là: 1000,01x=1x (nghìn đồng).

Giá sản xuất hai mặt đáy của một thùng đựng sơn là: 120.2πx2 = 240πx2 (nghìn đồng).

Chi phí sản xuất một thùng sơn là: Cx=1x+240πx2 (nghìn đồng) với x > 0.

Ta có C'x=1x2+480πx.

C'x=01x2+480πx=0480πx3=1x=1480π3.

Lập bảng biến thiên của hàm số trên khoảng (0; +∞).

Bài 2.9 trang 43 Chuyên đề Toán 12 Kết nối tri thức

Từ bảng biến thiên, ta có min0;+Cx17,20105  khi x=1480π30,0872.

Khi đó, chi phí thấp nhất để sản xuất một thùng sơn là khoảng 17,20105 nghìn đồng hay 17 201,05 đồng.

Ta có: 1 000 000 : 17 210,05 ≈ 58 135,98.

Vậy công ty có thể sản xuất được tối đa 58 135 thùng sơn.

Lời giải bài tập Chuyên đề Toán 12 Bài 4: Vận dụng đạo hàm để giải quyết một số bài toán tối ưu hay, chi tiết khác:

Xem thêm lời giải bài tập Chuyên đề học tập Toán 12 Kết nối tri thức hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 12 hay khác:


Giải bài tập lớp 12 sách mới các môn học