Bài 13 trang 25 Chuyên đề Toán 11 Cánh diều

Bài 13 trang 25 Chuyên đề Toán 11: Cho tam giác nhọn ABC. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD, ACE.

a) Xác định ảnh của các điểm D và C quay phép quay tâm A với góc quay φ = 60°.

b) Chứng minh rằng DC = BE.

c) Chứng minh rằng số đo góc giữa hai đường thẳng DC và BE bằng 60°.

Lời giải:

Bài 3 trang 25 Chuyên đề học tập Toán 11 Cánh diều

a) + Vì tam giác ABD đều nên AD = AB và DAB^=60°.

Phép quay với góc quay φ = 60° có chiều quay ngược chiều kim đồng hồ. Do đó, ảnh của điểm D phép quay tâm A với góc quay φ = 60° là điểm B.

+ Vì tam giác ACE đều nên AC = AE và CAE^=60° .

Do đó, ảnh của điểm C phép quay tâm A với góc quay φ = 60° là điểm E.

b) Theo câu a) ta có B và E lần lượt là ảnh của D và C qua phép quay tâm A với góc quay φ = 60°, suy ra DC = BE (phép quay bảo toàn khoảng cách giữa hai điểm bất kì).

c) Gọi O là giao điểm của DC và BE, I là giao điểm của AB và DC.

Ta có phép quay tâm A với góc quay φ = 60° biến góc ADC thành góc ABE nên ADC^=ABE^  hay ADI^=IBO^.

AID^=BIO^(2 góc đối đỉnh), ADI^+AID^+DAI^=180° (tổng ba góc trong tam giác ADI) và IBO^+BIO^+IOB^=180° (tổng ba góc trong tam giác IBO).

Từ đó suy ra DAI^=IOB^ hay DOB^=DAB^=60°

Như vậy, số đo góc giữa hai đường thẳng DC và BE bằng 60°.

Lời giải Chuyên đề Toán 11 Bài 1: Phép dời hình hay, chi tiết khác:

Xem thêm lời giải bài tập Chuyên đề học tập Toán 11 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 11 hay khác:


Giải bài tập lớp 11 sách mới các môn học