Chứng minh a^n - b^n = (a-b)(a^(n-1) + a^(n-2)b + ... + ab^(n-2) + b^(n-1) với n thuộc N sao
Bài 7 trang 29 Chuyên đề Toán 10: Chứng minh an – bn = (a – b)(an – 1 + an – 2b + ... + abn –2 + bn – 1) với n ∈ ℕ*.
Lời giải:
+) Khi n = 1, ta có: a1 – b1 = a – b.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là:
ak + 1 – bk + 1 = (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + ... + ab(k + 1) –2 + b(k + 1) – 1]
Thật vậy, theo giả thiết quy nạp ta có:
ak – bk = (a – b)(ak – 1 + ak – 2b + ... + abk –2 + bk – 1)
Khi đó:
ak + 1 – bk + 1
= a . ak – b . bk
= a . ak – a . bk + a . bk – b . bk
= a . (ak – bk) + bk . (a – b)
= a . (a – b)(ak – 1 + ak – 2b + ... + abk –2 + bk – 1) + bk . (a – b)
= (a – b) . a . (ak – 1 + ak – 2b + ... + abk –2 + bk – 1) + (a – b) . bk
= (a – b)(a . ak – 1 + a . ak – 2b + ... + a . abk – 2 + a . bk – 1) + (a – b) . bk
= (a – b)[a1 + (k – 1) + a1 + (k – 2)b + ... + a2bk – 2 + a . bk – 1) + (a – b) . bk
= (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + ... + a2b(k + 1) – 3 + ab(k + 1) –2] + (a – b) . b(k + 1) – 1
= (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + ... + ab(k + 1) –2 + b(k + 1) – 1].
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề P(n) đúng với mọi n ∈ ℕ*.
Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Cánh diều hay, chi tiết khác:
Bài 2 trang 29 Chuyên đề Toán 10: Cho và , với n ∈ ℕ*
a) So sánh S1 và T1; S2 và T2; S3 và T3 ....Bài 6 trang 29 Chuyên đề Toán 10: Chứng minh nn > (n + 1)n - 1 với n ∈ ℕ*, n ≥ 2 ....
Xem thêm các tài liệu học tốt lớp 10 hay khác:
- Giải Chuyên đề học tập Toán 10 Kết nối tri thức
- Giải Chuyên đề học tập Toán 10 Chân trời sáng tạo
- Giải Chuyên đề học tập Toán 10 Cánh diều
- Giải lớp 10 Kết nối tri thức (các môn học)
- Giải lớp 10 Chân trời sáng tạo (các môn học)
- Giải lớp 10 Cánh diều (các môn học)
- Giải Tiếng Anh 10 Global Success
- Giải Tiếng Anh 10 Friends Global
- Giải sgk Tiếng Anh 10 iLearn Smart World
- Giải sgk Tiếng Anh 10 Explore New Worlds
- Lớp 10 - Kết nối tri thức
- Soạn văn 10 (hay nhất) - KNTT
- Soạn văn 10 (ngắn nhất) - KNTT
- Soạn văn 10 (siêu ngắn) - KNTT
- Giải sgk Toán 10 - KNTT
- Giải sgk Vật lí 10 - KNTT
- Giải sgk Hóa học 10 - KNTT
- Giải sgk Sinh học 10 - KNTT
- Giải sgk Địa lí 10 - KNTT
- Giải sgk Lịch sử 10 - KNTT
- Giải sgk Kinh tế và Pháp luật 10 - KNTT
- Giải sgk Tin học 10 - KNTT
- Giải sgk Công nghệ 10 - KNTT
- Giải sgk Hoạt động trải nghiệm 10 - KNTT
- Giải sgk Giáo dục quốc phòng 10 - KNTT
- Lớp 10 - Chân trời sáng tạo
- Soạn văn 10 (hay nhất) - CTST
- Soạn văn 10 (ngắn nhất) - CTST
- Soạn văn 10 (siêu ngắn) - CTST
- Giải Toán 10 - CTST
- Giải sgk Vật lí 10 - CTST
- Giải sgk Hóa học 10 - CTST
- Giải sgk Sinh học 10 - CTST
- Giải sgk Địa lí 10 - CTST
- Giải sgk Lịch sử 10 - CTST
- Giải sgk Kinh tế và Pháp luật 10 - CTST
- Giải sgk Hoạt động trải nghiệm 10 - CTST
- Lớp 10 - Cánh diều
- Soạn văn 10 (hay nhất) - Cánh diều
- Soạn văn 10 (ngắn nhất) - Cánh diều
- Soạn văn 10 (siêu ngắn) - Cánh diều
- Giải sgk Toán 10 - Cánh diều
- Giải sgk Vật lí 10 - Cánh diều
- Giải sgk Hóa học 10 - Cánh diều
- Giải sgk Sinh học 10 - Cánh diều
- Giải sgk Địa lí 10 - Cánh diều
- Giải sgk Lịch sử 10 - Cánh diều
- Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
- Giải sgk Tin học 10 - Cánh diều
- Giải sgk Công nghệ 10 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
- Giải sgk Giáo dục quốc phòng 10 - Cánh diều