Chứng minh n^n > (n+1)^(n-1) với n thuộc N sao, n lớn hơn bằng 2

Bài 6 trang 29 Chuyên đề Toán 10: Chứng minh nn > (n + 1)n – 1 với n ∈ ℕ*, n ≥ 2.

Lời giải:

+) Khi n = 2, ta có: 22 > (2 + 1)2 – 1  4 > 3.

Vậy mệnh đề đúng với n = 1.

+) Với k là một số nguyên dương tuỳ ý (k ≥ 2) mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: (k + 1)k + 1 > [(k+1) + 1](k + 1) – 1.

Thật vậy, theo giả thiết quy nạp ta có: kk > (k + 1)k – 1.

Suy ra: kk . (k + 1)k + 1 > (k + 1)k – 1 . (k + 1)k + 1

 kk . (k + 1)k + 1 > (k + 1)2k

 kk . (k + 1)k + 1 > [(k + 1)2]k

 kk . (k + 1)k + 1 > (k2 + 2k + 1)k > (k2 + 2k)k = [k(k + 2)]k = kk . (k + 2)k

 (k + 1)k + 1 > (k + 2)k = (k + 2)(k + 1) – 1

Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề P(n) đúng với mọi n ∈ ℕ*, n ≥ 2.

Xem thêm lời giải bài tập Chuyên đề học tập Toán 10 Cánh diều hay, chi tiết khác:

Xem thêm các tài liệu học tốt lớp 10 hay khác:


Giải bài tập lớp 10 sách mới các môn học