40 câu trắc nghiệm Ôn tập chương 2 Toán 12 Giải tích có đáp án (phần 1)



Với 40 bài tập & câu hỏi trắc nghiệm Ôn tập chương 2 Toán lớp 12 Giải tích có đáp án và lời giải chi tiết đầy đủ các mức độ nhận biết, thông hiểu, vận dụng sẽ giúp học sinh ôn trắc nghiệm Toán 12.

Câu 1: Khẳng định nào sau đây là đúng?

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 2: Lôgarit cơ số 3 của 27.∜9.∛9 là:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12
Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 3: Tính giá trị biểu thức 7log77 - log777

A. 0   B. -6   C. 7   D. 1/7

7log77 - log777 = 7 - 7log77 = 7 - 7.1 = 0

Câu 4: Giải phương trình 10x = 400

A. x = 2log4   B. x = 4log2    C. x = 2log2 + 2   D. x = 4

10x = 400 ⇒ x = log400 = log(22.102) = log22 + log102 = 2log2 + 2

Câu 5: Nếu logx - 5log3 = -2 thì x bằng

A. 0,8   B. 0,81   C. 1,25   D. 2,43

Điều kiện: x > 0

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

⇒ x = 2,43

Câu 6: Giải bất phương trình 2x + 2x + 1 ≤ 3x + 3x - 1

A. x ≤ 2    B. x ≤ -2    C. x ≥ 2   D. x ≥ -2

2x + 2x + 1 ≤ 3x + 3x - 1 <⇒2x + 2.2x ≤ 3x + (1/3).3xx <⇒ 3.2x ≤ 4/3.3x

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 7: Giải bất phương trình log45x - log3 > 1

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Điều kiện: x > 0

log45x - log3 > 1 <⇒ log(45x/3) > 1 <⇒ log15x > 1 <⇒ 15x > 10 <⇒ x > 2/3

Kết hợp điều kiện ta được: x > 2/3

Câu 8: Rút gọn biểu thức

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12
Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 9: Tìm các điểm cực trị của hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A.x = -1   B. x = 1    C. x = 1/2   D. x = 2

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Ta thấy y’ đổi dấu khi đi qua điểm x = 1 nên hàm số có một điểm cực trị là x = 1.

Câu 10: Đặt log2 = a, log3 = b . Khi đó log512 bằng

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12
Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 11: Tìm các đường tiệm cận ngang của đồ thị hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

A. y = 0    C. y = 0 và y = 1

B. y = -1   D. y = 0 và y = -1

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Từ đó suy ra hàm số có hai tiệm cận ngang là y = 1 và y = 0

Câu 12: Ngày 27 tháng 3 năm 2016 bà Mai gửi tiết kiệm vào ngân hàng số tiền 100 triệu đồng với hình thức lãi kép và lãi suất 6,8% một năm. Bà Mai dự tính đến ngày 27 tháng 3 năm 2020 thì rút hết tiền ra để lo công chuyện. Hỏi bà sẽ rút được bao nhiêu tiền (làm tròn kết quả đến hàng nghìn) ?

A. 38949000 đồng   C. 31259000 đồng

B. 21818000 đồng   D. 30102000 đồng

Số tiền lãi bà Mai nhận được sau 4 năm (2020 - 2016 = 4 năm) là :

100000000(1 + 0,068)4 - 100000000 ≈ 30102000(đồng)

Câu 13: Tính đạo hàm của hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12
Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 14: Cho hàm số

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Khẳng định nào sau đây đúng ?

A. x = e2 là điểm cực đại của hàm số

B. x = e2 là điểm cực tiểu của hàm số

C. x = √e là điểm cực đại của hàm số

D. x = √e là điểm cực tiểu của hàm số

Tập xác định: D = (0; +∞)

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Nên x = √e là điểm cực đại của hàm số

Câu 15: Giải phương trình

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Điều kiện : log3x ≠ 0 ⇔ x ≠ 1

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 16: Tính tổng bình phương các nghiệm của phương trình 32 + x + 32 - x = 82

A. 4   B. 8   C. 12   D. 16

Ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

PT <⇒ 9.32x - 82.3x + 9 = 0. Đặt t = 3x (t > 0), nhận được phương trình

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 17: Nếu logkx.log5k = 3 thì x bằng

A. k3    B. k5    C. 125   D. 243

Điều kiện: x > 0

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 18: x là nghiệm của phương trình log3x + log9x + log27x = 11/2 . Hãy tính x-1/3

A. x = 3    B. x = 1/3    C. x = ∛9   D. x = 1/∛9

Điều kiện: x > 0

PT <⇒ log3x + log32x + log33x = 11/2

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Câu 19: Giả sử x là nghiệm của phương trình 4log2x + x2 = 8. Tính (log3x)3

A. 1    B. 8   C. 2√2    D. ±1

Điều kiện: x > 0

Ta có: 4log2x = 22log2x = 2log2x2 = x2.

Do đó phương trình đã cho tương đương với:

x2 + x2 = 8 ↔ 2x2 = 8 <⇒ x2 = 4 <⇒ x = 2 (do x > 0) .

Vậy (log2x)3 = 13 = 1

Câu 20: Giải bất phương trình 9x - 82.3x + 81 ≤ 0

A. 1 ≤ x ≤ 4    B. 0 ≤ x ≤ 4     C. 1 ≤ x ≤ 5    D. 0 ≤ x ≤ 5

Đặt t = 3x (t > 0), nhận được bất phương trình:

t2 - 82t + 81 ≤ 0 <⇒ 1 ≤ t ≤ 81 <⇒ 1 = 30 ≤ 3x ≤ 34 <⇒ 0 ≤ x ≤ 4

Xem thêm Bài tập trắc nghiệm Toán 12 phần Giải tích ôn thi Tốt nghiệp THPT có đáp án hay khác:




Giải bài tập lớp 12 sách mới các môn học