Cho đường tròn (O), đường thẳng d đi qua O và điểm A thuộc (O) nhưng không thuộc d

Bài 3 trang 99 VTH Toán 9 Tập 1: Cho đường tròn (O), đường thẳng d đi qua O và điểm A thuộc (O) nhưng không thuộc d. Gọi B là điểm đối xứng với A qua d; C và D lần lượt là điểm đối xứng với A và B qua O.

a) Ba điểm B, C và D có thuộc (O) không? Vì sao?

b) Chứng minh tứ giác ABCD là hình chữ nhật.

c) Chứng minh rằng C và D đối xứng với nhau qua d.

Lời giải:

(H.5.3)

Cho đường tròn (O), đường thẳng d đi qua O và điểm A thuộc (O) nhưng không thuộc d

a) Vì d là một đường kính của đường tròn và B đối xứng với A qua d nên từ A ∈ (O) suy ra AB ⊥ d.

Lại có O là tâm của đường tròn và C, D lần lượt là điểm đối xứng với A, B qua O nên từ A, B ∈ (O) suy ra C và D cũng thuộc đường tròn (O).

Vậy ba điểm B, C và D thuộc đường tròn (O).

b) Vì C đối xứng với A qua O nên O là trung điểm của AC.

Vì D đối xứng với B qua O nên O là trung điểm của BD.

Tứ giác ABCD có hai đường chéo AC và BD và O là trung điểm của AC và BD nên ABCD là hình bình hành.

Lại có, AC = BD (cùng bằng đường kính của (O)).

Do đó, hình bình hành ABCD là hình chữ nhật.

c) Vì B là điểm đối xứng với A qua d nên d là đường trung trực của AB.

Hình chữ nhật ABCD có AB // CD nên d cũng là đường trung trực của CD.

Do đó C và D đối xứng với nhau qua d.

Lời giải vở thực hành Toán 9 Bài 13: Mở đầu về đường tròn hay khác:

Xem thêm các bài giải vở thực hành Toán lớp 9 Kết nối tri thức hay, chi tiết khác:


Giải bài tập lớp 9 Kết nối tri thức khác