Cho tam giác ABC, đường cao AH. Gọi M là trung điểm của AC
Bài 3 trang 58 vở thực hành Toán 8 Tập 1: Cho tam giác ABC, đường cao AH. Gọi M là trung điểm của AC, N là điểm sao cho M là trung điểm của HN. Chứng minh tứ giác AHCN là hình chữ nhật.
Lời giải:
(H.3.29). Ta có: AM = MC, HM = MN nên tứ giác AHCN có hai đường chéo AC, HN cắt nhau tại trung điểm mỗi đường nên AHCN là hình bình hành.
Vì hay hình bình hành AHCN có một góc vuông nên AHCN là hình chữ nhật.
Lời giải vở thực hành Toán 8 Bài 13: Hình chữ nhật hay khác:
Xem thêm các bài giải vở thực hành Toán lớp 8 Kết nối tri thức hay, chi tiết khác:
Giải bài tập lớp 8 Kết nối tri thức khác
- Soạn văn 8 (hay nhất) - KNTT
- Soạn văn 8 (ngắn nhất) - KNTT
- Giải sgk Toán 8 - KNTT
- Giải Tiếng Anh 8 Global Success
- Giải sgk Tiếng Anh 8 Smart World
- Giải sgk Tiếng Anh 8 Friends plus
- Giải sgk Khoa học tự nhiên 8 - KNTT
- Giải sgk Lịch Sử 8 - KNTT
- Giải sgk Địa Lí 8 - KNTT
- Giải sgk Giáo dục công dân 8 - KNTT
- Giải sgk Tin học 8 - KNTT
- Giải sgk Công nghệ 8 - KNTT
- Giải sgk Hoạt động trải nghiệm 8 - KNTT
- Giải sgk Âm nhạc 8 - KNTT