Giải Vở thực hành Toán 7 trang 69 Tập 2 Kết nối tri thức
Với Giải VTH Toán 7 trang 69 Tập 2 trong Bài 32: Quan hệ giữa đường vuông góc và đường xiên Vở thực hành Toán lớp 7 Tập 2 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong VTH Toán 7 trang 69.
Câu 1 trang 69 vở thực hành Toán lớp 7 Tập 2: Cho tam giác ABC có đường cao AH. Khi đó:
A. AC < AH;
B. AH > AB;
C. AH < AC;
D. Nếu thì AC > AB.
Lời giải:
Đáp án đúng là: C
Tam giác ABC có đường cao AH nên AH là đường vuông góc kẻ từ A đến BC và AB, AC là các đường xiên kẻ từ A đến BC.
Do đó, AB > Ah, AC > AH, vậy đáp án A, B sai và đáp án C đúng.
Ta có thì AC < AB nên đáp án D sai.
Câu 2 trang 69 vở thực hành Toán lớp 7 Tập 2: Cho Hình 9.5, kết luận nào sau đây là đúng?
A. AH = AM;
B. HM + MN > AN;
C. HM > AM;
D. AH < AN.
Lời giải:
Đáp án đúng là: D
Do AH vuông góc với đường thẳng MN tại H nên AH là đường vuông góc kẻ từ A đến MN và AM, AN là các đường xiên kẻ từ A đến MN.
Suy ra AH < AM, AH < AN. Vậy đáp án D đúng.
Bài 1 (9.7) trang 69 vở thực hành Toán lớp 7 Tập 2: Cho hình vuông ABCD. Hỏi trong bốn đỉnh của hình vuông.
a) Đỉnh nào cách đều hai điểm A và C?
b) Đỉnh nào cách đều hai đường thẳng AB và AD?
Lời giải:
a) Ta có AB = AD và CB = CD nên hai đỉnh B và D cách đều hai điểm A và C.
b) • Ta có CB ⊥ AB nên CB là khoảng cách từ C đến AB. Tương tự do CD ⊥ AD nên CD là khoảng cách từ C đến AD. Mặt khác ta có CB = CD. Vậy C là một điểm cách đều hai đường thẳng AB và AD.
• Vì điểm A nằm trên hai đường thẳng AB và AD nên khoảng cách từ A đến hai đường thẳng ấy bằng nhau. Vậy A cũng là một điểm cách đều hai đường thẳng AB và AD.
Bài 2 (9.8) trang 69 vở thực hành Toán lớp 7 Tập 2: Cho tam giác cân ABC, AB = AC. Lấy điểm M tùy ý nằm giữa B và C (H.9.7).
a) Khi M thay đổi thì độ dài AM thay đổi. Xác định vị trí của điểm M để độ dài AM nhỏ nhất.
b) Chứng minh rằng với mọi điểm M thì AM < AB.
Lời giải:
a) Kẻ đường cao AH của tam giác ABC, ta có AH là đường vuông góc hạ từ điểm A xuống BC. Gọi M là điểm tùy ý nằm giữa B và C. Nếu M khác H thì AM là đường xiên kẻ từ A đến BC. Do đó theo định lí, AH < AM. Vậy AM nhỏ nhất bằng AH khi M trùng H.
b) M là một điểm nằm giữa B và C. Ta cần chứng minh AM < AB. Muốn vậy, ta xét các trường hợp sau:
Trường hợp 1: Nếu , thì AM là đường vuông góc, còn AB là đường xiên kẻ từ A xuống BC theo định lí về đường vuông góc và đường xiên, ta có AM < AB.
Trường hợp 2: Nếu là góc tù thì trong tam giác AMB, góc AMB lớn nhất nên AM < AB.
Trường hợp 3: Nếu là góc nhọn thì góc AMC kề bù với nó nên là góc tù.
Trong tam giác AMC, góc AMC lớn nhất. Do đó AM < AC = AB.
Lời giải Vở thực hành Toán lớp 7 Bài 32: Quan hệ giữa đường vuông góc và đường xiên Kết nối tri thức hay khác:
Xem thêm lời giải Vở thực hành Toán lớp 7 Kết nối tri thức hay, chi tiết khác:
- VTH Toán 7 Bài 33: Quan hệ giữa ba cạnh của một tam giác
- VTH Toán 7 Luyện tập chung trang 74,75 Tập 2
- VTH Toán 7 Bài 34: Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác
- VTH Toán 7 Bài 35: Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác
- VTH Toán 7 Luyện tập chung trang 84,85 Tập 2
- Soạn văn 7 (hay nhất) - KNTT
- Soạn văn 7 (ngắn nhất) - KNTT
- Giải sgk Toán 7 - KNTT
- Giải Tiếng Anh 7 Global Success
- Giải Tiếng Anh 7 Friends plus
- Giải sgk Tiếng Anh 7 Smart World
- Giải Tiếng Anh 7 Explore English
- Giải sgk Khoa học tự nhiên 7 - KNTT
- Giải sgk Lịch Sử 7 - KNTT
- Giải sgk Địa Lí 7 - KNTT
- Giải sgk Giáo dục công dân 7 - KNTT
- Giải sgk Tin học 7 - KNTT
- Giải sgk Công nghệ 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Âm nhạc 7 - KNTT